首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micrometer‐sized superparamagnetic poly(styrene–glycidyl methacrylate)/Fe3O4 spheres were synthesized by two‐stage dispersion polymerization with modified hydrophobic Fe3O4 nanoparticles, styrene (St), and glycidyl methacrylate (GMA). The morphology and properties of the magnetic Fe3O4–P (St‐GMA) microspheres were examined by scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, thermogravimetric analysis, and attenuated total reflectance. The average size of the obtained magnetic microspheres was 1.50 μm in diameter with a narrow size distribution, and the saturation magnetization of the magnetic microspheres was 8.23 emu/g. The magnetic Fe3O4–P (St‐GMA) microspheres with immobilized iminodiacetic acid–Cu2+ groups were used to investigate the adsorption capacity and selectivity of the model proteins, bovine hemoglobin (BHb) and bovine serum albumin (BSA). We found that the adsorption capacity of BHb was as high as 190.66 mg/g of microspheres, which was 3.20 times greater than that of BSA, which was only 59.64 mg/g of microspheres as determined by high‐performance liquid chromatography. With a rather low nonspecific adsorption, these microspheres have great potential for protein separation and purification applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43005.  相似文献   

2.
Water contaminated by oil poses challenges to the management of water resources. Magnetic nanoparticles has been issue of different potential applications including remotion oil from water. Magnetic polystyrene–palygorskite nanocomposites were prepared by a heterogeneous phase polymerization for the removal of organic contaminants from water. The organo‐Fe3O4‐palygorskite nanoparticles were coated with polystyrene, forming water repellent and oil absorbing surfaces to promote the removal of oil from the surfaces of nanocomposites by applying an external magnetic field. X‐ray fluorescence, X‐ray diffraction, scanning electron microscopy, zeta potential and size distribution measurement, surface area determination by BET, density measurement by He pycnometry, carbon grade determination, thermogravimetric analysis, Fourier‐transform infrared spectroscopy, Raman spectroscopy, and evaluation of hydrophobicity by contact angle were used to characterize the nanoparticles. The magnetic nanocomposite obtained showed excellent hydrophobicity, around 78° contact angle. In addition, oil removal capability tests were also performed, according to which the preliminary results indicated removal of approximately 98% of oil in synthetic oily water samples. The oil–water separation using this magnetic nanocomposite provides a promising alternative strategy for water treatment. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46162.  相似文献   

3.
A simple method for the preparation of magnetic nanocomposites consisting of cobalt ferrite (CF; CoFe2O4) nanoparticles, polybenzoxazine (PB), linear low‐density polyethylene (LLDPE), and linear low‐density polyethylene‐g‐maleic anhydride (LgM) is described. The composites were prepared by the formation of benzoxazine (BA)–CF nanopowders followed by melt blending with LLDPE and the thermal curing of BA. The composites were characterized by X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, universal testing machine measurement, and vibrating sample magnetometry. The composites consisting of LLDPE, PB, and LgM (47.5L–47.5PB–5LgM) exhibited a higher tensile strength (23.82 MPa) than pure LLDPE and a greater elongation at break (6.11%) than pure PB. The tensile strength of the composites decreased from 19.92 to 18.55 MPa with increasing CF loading (from 14.25 to 33.25 wt %). The saturation magnetization of the composites containing 33.25 wt % CF was 18.28 emu/g, and it decreased with decreasing amount of CF in the composite. The composite films exhibited mechanical flexibility and magnetic properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
In this study, polymer‐grafted magnetic nanoparticles containing chromium(III) ions incorporated onto Fe3O4/mercaptopropanoic acid‐poly(2‐hydroxyethyl acrylate) was prepared via a simple and in situ method. The obtained magnetic nanocomposite exhibited high catalytic activity and excellent selectivity in direct hydroxylation of benzene in the presence of hydrogen peroxide under solvent‐free condition. The magnetic catalyst could be also separated by an external magnet and reused seven times without any significant loss of activity/selectivity. Due to the Lewis acidity of the Fe3+ groups in the structure of magnetic nanoparticles, the high efficiency of this catalyst is possibly due to the synergetic effect of Cr3+ and Fe3+ groups in the structure of magnetic nanocomposite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40383.  相似文献   

5.
In this research, the controlled release of proteins from magnetite (Fe3O4)–chitosan (CS) nanoparticles exposed to an alternating magnetic field is reported. Fe3O4–CS nanoparticles were synthesized with sodium tripolyphosphate (TPP) molecules as a crosslinking reagent. Bovine serum albumin (BSA) was used as a model protein, and its controlled release studied through the variation of the frequency of an alternating magnetic field. The results show the successful coating of CS and BSA on the Fe3O4 nanoparticles with an average diameter of 50 nm. Intermolecular interactions of TPP with CS and BSA were confirmed by Fourier transform infrared spectroscopy. The application of low‐frequency alternating magnetic fields to such magnetic CS nanoparticles enhanced the protein release properties, in which the external magnetic fields could switch on the unloading of these nanoparticles. We concluded that enhanced BSA release from nanoparticles exposed to an alternating magnetic field is a promising method for achieving both the targeted delivery and controlled release of proteins. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43335.  相似文献   

6.
Poly(vinyl chloride) (PVC)/SiO2 nanocomposites were prepared via melt mixture using a twin‐screw mixing method. To improve the dispersion degree of the nanoparticles and endow the compatibility between polymeric matrix and nanosilica, SiO2 surface was grafted with polymethyl methacrylate (PMMA). The interfacial adhesion was enhanced with filling the resulting PMMA‐grafted‐SiO2 hybrid nanoparticles characterized by scanning electron microscopy. Both storage modulus and glass transition temperature of prepared nanocomposites measured by dynamic mechanical thermal analysis were increased compared with untreated nanosilica‐treated PVC composite. A much more efficient transfer of stresses was permitted from the polymer matrix to the hybrid silica nanoparticles. The filling of the hybrid nanoparticles caused the improved mechanical properties (tensile strength, notched impact strength, and rigidity) when the filler content was not more than 3 wt %. Permeability rates of O2 and H2O through films of PMMA‐grafted‐SiO2/PVC were also measured. Lower rates were observed when compared with that of neat PVC. This was attributed to the more tortuous path which must be covered by the gas molecules, since SiO2 nanoparticles are considered impenetrable by gas molecules. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Because of the sizes of the pore throat are on the nanometer scale, nanoparticles with sizes on the nanoscale have been developed as candidates for plugging materials during drilling in shale formation. In this study, Fe3O4 nanoparticles were prepared by a coprecipitation method, and then, Fe3O4/poly(acrylic acid) (PAA) hybrid nanoparticles were obtained through the modification of the Fe3O4 nanoparticles with PAA. The hybrid nanoparticles were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The magnetic properties, salt tolerance, and compatibility with sulfomethylated phenolic resin of the nanoparticles were studied. The plugging properties of the Fe3O4/PAA hybrid nanoparticles were evaluated by filtration testing of the filter cakes at ambient temperature and 80 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43967.  相似文献   

8.
In this article, we report a facile strategy for preparing high‐mechanical‐strength ferrohydrogels containing magnetic nanoparticles homodispersed by a thermodynamically stable Pickering emulsion (PE). After the monomers were mixed with the PE, including methacryloxy propyl trimethoxyl silane emulsified by ferric oxide (Fe2O3) nanoparticles as the dispersed phase, hydrogels were synthesized by free‐radical polymerization. In contrast to conventional hydrogels crosslinked by a molecular crosslinker, in our new approach, the magnetic PE particles served as individual, multifunctional crosslinkers. Characterizations of the swelling behavior, the mechanical properties, and other properties indicated that our ferrohydrogels exhibited outstanding physical performances that were superior to those of traditional hydrogels and magnetic responsiveness. These ferrohydrogels may have applications in soft and controllable actuators. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41950.  相似文献   

9.
In this study, self‐synthesized copper(I) oxide (Cu2O) nanoparticles were incorporated in poly(ether sulfone) (PES) mixed‐matrix membranes (MMMs) through the phase‐inversion method. A cubic arrangement and crystallite size of 28 nm was identified by transmission electron microscopy and X‐ray diffraction (XRD) for the as‐synthesized Cu2O particles. The pristine PES membrane had a higher contact angle value of 88.50°, which was significantly reduced up to 50.10° for 1.5 wt % PES/Cu2O MMMs. Moreover, XRD analysis of the Cu2O‐incorporated PES membrane exhibited a new diffraction pattern at 36.46°. This ensured that the Cu2O nanoparticles were distributed well in the PES matrix. Interestingly, the water permeability progressively improved up to 66.72 × 10?9 m s?1 kPa?1 for 1.5 wt % PES/Cu2O MMMs. Furthermore, the membrane performances were also evaluated with different feed solutions: (1) bovine serum albumin, (2) humic acid, and (3) oil–water. The enhanced rejection and lower flux reduction percentage were observed for hybrid membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43873.  相似文献   

10.
Temperature and pH responsive poly(N‐isopropylacrylamide‐co‐methacrylic acid) (P(NIPAAm‐co‐MAA)) microcontainers with encapsulated magnetic nanoparticles in the shell were prepared by a two‐stage distillation precipitation polymerization. PMAA@Fe3O4/P(NIPAAm‐co‐MAA) core–shell nanoparticles were synthesized by the second‐stage polymerization of NIPAAm, MAA and N, N′‐methylenebisacrylamide as crosslinker in the presence of magnetic nanoparticles and PMAA as core. These novel triple‐functional microcontainers were prepared by selective removal of the PMAA core in water. Daunorubicin hydrochloride (DNR) was loaded into the microcontainers and the release profile was studied by UV–visible spectroscopy. The synthesized nanostructures were characterized with transmission and scanning electron microscopy, X‐ray diffraction and Fourier transform infrared spectroscopy. The magnetic properties were evaluated by vibrating sample magnetometry. The shrink and swelling behavior was studied by dynamic light scattering. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
The interforce between the magnetic composite forward osmosis (FO) membranes and the magnetic draw solution was proposed to reduce the internal concentration polarization (ICP) of FO process, and realized the synergetic permeability improvement of resultant FO membranes. The key factor was the successful fabrication of the Fe3O4 magnetic nanoparticles (MNPs) with small‐size and narrow distribution via co‐precipitation method. The cellulose triacetate (CTA) magnetic composite FO membranes were fabricated using Fe3O4 as additive via in situ interfacial polymerization, and named CTA‐Fe3O4. Dynamic light scattering (DLS) and zeta results showed that the coated sodium oleate on the MNPs explained their reducing aggregation and the stability of various pHs. The MNPs' surface segregation during demixing process resulted in the improvement of hydrophilicity, Fe content and roughness of resultant CTA‐Fe3O4 composite FO membranes. Furthermore, the in situ interfacial polymerization resulted in the formation of the polyamide selective layer, and the CTA‐Fe3O4 membrane's N content was 11.02% to 11.12%. The permeability properties (FO and pressure retarded osmosis modules) were characterized using 1.0M NaCl and 100 mg/L Fe3O4 as draw solutions, respectively. The results indicated that the higher concentration of MNPs supplied more interforce and better FO permeability properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44852.  相似文献   

12.
Magnetic star‐shaped amphiphilic copolymers (S‐Fe3O4‐PLA‐b‐MPEG) consisting of Fe3O4 as the core, poly(L ,D ‐lactide) (PLA) as the inner layer, and monomethyl polyethylene glycol (MPEG) as the out shell were synthesized. The syntheses included ring‐opening polymerization of L ,D ‐lactide initiated by hydroxyl modified Fe3O4 (Fe3O4‐(OH) n), followed by the esterification of the PLA with MPEG. The structure of the star block copolymers were characterized by Fourier Transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, transmission electron microscopy, nanoparticle size analyzer, and vibrating sample magnetometer. The nanoparticles in aqueous solution were made from the amphiphilic star copolymer. The average size of the nanoparticles was adjustable and increased with the increase of the PLA segments in the copolymer. The cytotoxicity grade of the nanoparticles was zero determined by the analysis of cytotoxicity. The nanoparticles could potentially be used as the drug vehicles for magnetic‐response controlled release. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
Magnetic microspheres with ion‐exchange features were prepared by applying a swelling and penetration process using polystyrene–divinylbenzene‐based anion‐exchange resins as starting materials. The polymeric anion‐exchange particles were swollen with an aqueous solution of N‐methyl‐2‐pyrrolidone, followed by incubation with superparamagnetic iron oxide nanoparticles to allow them to penetrate into the swollen particles. The pH value in the solution of magnetic nanoparticles could significantly influence the uptake of magnetic nanoparticles by the swollen anion‐exchange particles. Higher amounts of magnetic nanoparticles entrapped within anion exchangers could be achieved at pH 10–12. An increase in the concentration of magnetic nanoparticles led to a higher density of magnetic nanoparticles entrapped within the interior of anion exchangers and, thus, higher magnetization of the magnetic anion exchangers. Loading of the magnetic nanoparticles onto the exchanger had no effect on anion‐exchange functionality. The utility of the resulting magnetic anion‐exchange resins was demonstrated for the isolation of plasmid pEGFP‐C1 from Escherichia coli cell lysates. The magnetic anion‐exchange microspheres could be easily collected within a few seconds in a magnetic field. Thus, automation of the protocol for DNA isolation using these magnetic anion‐exchange resins has a high potential. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40725.  相似文献   

14.
A one‐pot synthesis is developed for PEG600b‐poly(glycerol monoacrylate) (PEG600b‐PGA), by which folate and superparamagnetic iron oxide nanoparticles (SPIONs) are assembled to form folic acid‐conjugated magnetic nanoparticles (FA‐MNPs) as a tumor targeting system. The synthesis consists of a “click” reaction and atom transfer radical polymerization (ATRP) to obtain the well‐defined furan‐protected maleimido‐terminated PEG600b‐poly(solketal acrylate) (PEG600b‐PSA) copolymer. After deprotection, the key copolymer N‐maleimido‐terminated PEG600b‐PGA is successfully conjugated with thiol derivatives of folate and FITC, respectively. FA‐MNPs are developed by assembling of the resulting polymer FA‐PEG600b‐PGA with SPIONs, and characterized for their size, surface charge, and superparamagnetic properties. To investigate the cellular uptake of the nanoparticles by Hela cells and φ2 cells using fluoresce technique, FA‐FITC‐MNPs are also obtained by assembling of FA‐PEG600b‐PGA, FITC‐PEG600b‐PGA with SPIONs. Qualitative and quantitative determinations of FA‐FITC‐MNPs show that the particles specifically internalized to Hela cells. No significant cytotoxicity is observed for these two kinds of cell lines. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40405.  相似文献   

15.
Multifunctional hybrid nanoparticles, Fe3O4@poly[(2‐dimethylamino)ethyl methacrylate]‐block‐poly(2‐hydroxyethyl methacrylate)‐graft‐carbazole, with pH‐responsivity, superparamagnetism and fluorescence for targeted drug delivery and release have been synthesized. The nanoparticles have a core‐shell structure as determined from transmission electron microscopy, pH‐responsivity as determined from hydrodynamic radius analysis, superparamagnetism as determined from vibrating sample magnetometry and fluorescence as determined from fluorescence spectroscopy and fluorescence microscopy. The release behavior of model drug progesterone indicates that the release rate can be effectively controlled by altering the pH of the environment. The multifunctional nanoparticles could be applied extensively in targeted drug delivery and release, and with fluorescence they can serve as efficient tracers to record magnetic targeting routes. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
A poly(vinyl cinnamate) (PVCin) composite was synthesized by a simple one step in situ polymerization of vinyl cinnamate with nickel oxide (NiO) nanoparticles. The structural, morphological and thermal properties of the nanocomposite were characterized using Fourier transform (FT)‐Raman, FT infrared (FTIR) and UV spectroscopies, X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), differential scanning calorimetry and vibrating sample magnetometry (VSM) measurements. FT‐Raman, FTIR and UV spectroscopy results revealed the characteristic absorption and shifts of peaks of the polymer matrix, the shifts being attributed to the interaction of NiO nanoparticles with the polymer chains. The structural and morphological analysis using XRD, HRTEM and FESEM showed the uniform arrangement of nanoparticles within the polymer chains. VSM showed the ferromagnetic nature of the composite with an increasing saturation of magnetism. The glass transition temperature (Tg) of the composite was higher than that of pure PVCin and Tg of the composite increased with increasing nanoparticle content. The electrical resistivity of the nanocomposite was studied from AC and DC conductivity measurements. AC and dielectric properties were markedly enhanced in the whole range of frequency due to the presence of NiO nanoparticles. DC conductivity of the nanocomposite was much higher than that of PVCin and the conductivity of the nanocomposite increased with increasing content of NiO nanoparticles. © 2016 Society of Chemical Industry  相似文献   

17.
Nanocomposites of isotactic polypropylene (iPP) with 0.5 wt% filler of MgO@Mg(OH)2 (35 nm) or silicon dioxide (20–60 nm) or barium titanate (50 nm) nanoparticles were obtained from melt compounding of filler masterbatches with commercial iPP. The masterbatches with 5 wt% nanofiller were prepared in an in situ polymerization procedure using a metallocene/methylaluminoxane (MAO) catalyst system that was supported on the respective oxides. The original agglomerates of the nanoparticles were broken up by treatment with dibutylmagnesium for MgO@Mg(OH)2, and with ultrasound in the presence of MAO for SiO2 and BaTiO3. The tacticity (98% mmmm) of the in situ formed PP was not influenced by the presence of the nanofillers. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy mapping show a fine dispersion of single particles and small clouds or clusters. The primary nanoparticles appear to be surrounded by polymer. The elongation at break was decreased to 50, 17 and 9% for MgO@Mg(OH)2), SiO2 and BaTiO3, respectively. After melt compounding with iPP, a homogeneous single‐particle distribution of the oxidic nanoparticles was found in the resulting composites with 0.5 wt% filler content. © 2019 Society of Chemical Industry  相似文献   

18.
Electrospun poly[(vinylidene fluoride)‐co ‐hexafluoropropylene]/silica (PVdF‐HFP/SiO2) nanocomposite polymer membranes (esCPMs) were prepared by incorporating different weight percentages of SiO2 nanoparticles onto electrospun PVdF‐HFP by electrospinning technique. The surface morphology of electrospun PVdF‐HFP nanocomposite membranes was characterized by scanning electron microscopy. The effect of SiO2 nanoparticles incorporation onto electrospun PVdF‐HFP polymer membranes (esPMs) has been studied by XRD, DSC, TGA, and tensile analysis. The electrospun PVdF‐HFP/SiO2 based nanocomposite membrane electrolytes (esCPMEs) were prepared by soaking the corresponding esCPMs into 1 M LiPF6 in EC:DMC (1:1 vol/vol %). The ionic conductivity of the esCPMEs was studied by AC‐impedance studies and it was found that the incorporation of SiO2 nanoparticles into PVdF‐HFP membrane has improved the ionic conductivity from 1.320 × 10?3 S cm?1 to 2.259 × 10?3 S cm?1. The electrochemical stability of the esCPME was studied by linear sweep voltammetry studies and it was found to be 2.87 V. Finally, a prototype LiCo0.2Mn1.8O4//C Li‐ion capacitor (LIC) cell was fabricated with esCPME, which delivered a discharge capacitance of 128 F g?1 at the current density of 1 A g?1 and retained 86% of its discharge capacitance even after 10,000 cycles. These results demonstrated that the esCPMEs could be used as promising polymer membrane electrolyte for LICs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45177.  相似文献   

19.
F luorescent and magnetic poly(styrene) (PS) based random co‐polymer nanofiber was synthesized in a controlled manner via chemical polymerization in three steps. A fluorescent and magnetic nanohybrid {Fe3O4/Congored (CR)} was separately prepared and chemically grafted onto the epichlorohydrin (ECH) units of the random co‐polymer. Characterizations of the above synthesized polymers were done with the help of Fourier transform infrared (FTIR) spectroscopy, UV–visible spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, fluorescence emission spectroscopy, field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) measurement, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and gel permeation chromatography (GPC) like analytical techniques. The FESEM results indicated that after the grafting of nanohybrid onto the random co‐polymer backbone, the polymer exhibited a nanofiber like morphology. Due to the surface functionalization and encapsulation reactions, the magnetic moment value of the nanohybrid and its nanocomposites were found to be reduced. Synthesis and characterization of magnetic and fluorescent random co‐polymer based nanofiber is the primary target of the present investigation and its application is extended to the catalysis field. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42796.  相似文献   

20.
This study focuses on the possibility of improving performance properties of polydicyclopentadiene (PDCPD) nanocomposites for engineering applications using nanoparticles. In this article, molybdenum disulfide/polydicyclopentadiene (MoS2/PDCPD) nanocomposites have been prepared by in situ ring‐opening metathesis polymerization using reaction injecting molding (RIM) process. To enhance the interfacial adhesion between the fillers and PDCPD matrix, the surface modified MoS2 nanoparticles hybridized with dialkyldithiophosphate (PyDDP) were successfully prepared by in situ surface grafting method. The effect of low MoS2 loadings (<3 wt %) on the mechanical and tribological behaviors of PDCPD was evaluated. The results indicated that the friction coefficient of the MoS2/PDCPD nanocomposites was obviously decreased and the wear resistance of nanocomposites was greatly improved by the addition of PyDDP‐hybridized MoS2 nanoparticles; meanwhile, the mechanical properties were also enhanced. The MoS2/PDCPD nanocomposites filled with 1 wt % PyDDP‐hybridized MoS2 exhibited the best mechanical and anti‐wear properties. The friction coefficient was shown to decrease by more than 40% compared to pure PDCPD by incorporating just 1 wt % hybridized MoS2 nanoparticles, and modest increase in modulus and strength was also observed. The reinforcing and wear‐resistant mechanisms of MoS2/PDCPD nanocomposites were investigated and discussed by scanning electron microscopy. The well interfacial compatibility between the particle/matrix interfaces played an important role for the improved mechanical and tribological properties of MoS2/PDCPD nanocomposites in very low MoS2 loadings. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号