首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onium modified montmorillonite (organoclay) was compounded with natural rubber (NR) in an internal mixer and cured by using a conventional sulfuric system. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) in 10 parts per hundred rubber (phr) was used as a compatibilizer in this study. For comparison purposes, two commercial fillers: carbon black (grade N330) and silica (grade vulcasil‐S) were used. Cure characteristics were carried out on a Monsanto MDR2000 Rheometer. Organoclay filled vulcanizate showed the lowest values of torque maximum, torque minimum, scorch, and cure times. The kinetics of cure reaction showed organoclay could behave as a cocuring agent. The mechanical testing of the vulcanizates involved the determination of tensile and tear properties. The improvement of tensile strength, elongation at break, and tear properties in organoclay filled vulcanizate were significantly higher compared to silica and carbon black filled vulcanizates. In terms of reinforcing efficiency (RE), organoclay exhibited the highest stiffness followed by silica and carbon black filled vulcanizates. Scanning electron microscopy revealed that incorporation of various types of fillers has transformed the failure mechanism of the resulting NR vulcanizates compared to the gum vulcanizates. Dynamic mechanical thermal analysis (DMTA) revealed that the stiffness and molecular relaxation of NR vulcanizates are strongly affected by the filler–rubber interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2438–2445, 2004  相似文献   

2.
In this study, we investigated the effects of untreated precipitated silica (PSi) and fly ash silica (FASi) as fillers on the properties of natural rubber (NR) and styrene–butadiene rubber (SBR) compounds. The cure characteristics and the final properties of the NR and SBR compounds were considered separately and comparatively with regard to the effect of the loading of the fillers, which ranged from 0 to 80 phr. In the NR system, the cure time and minimum and maximum torques of the NR compounds progressively increased at PSi loadings of 30–75 phr. A relatively low cure time and low viscosity of the NR compounds were achieved throughout the FASi loadings used. The vulcanizate properties of the FASi‐filled vulcanizates appeared to be very similar to those of the PSi‐filled vulcanizates at silica contents of 0–30 phr. Above these concentrations, the properties of the PSi‐filled vulcanizates improved, whereas those of the FASi‐filled compounds remained the same. In the SBR system, the changing trends of all of the properties of the filled SBR vulcanizates were very similar to those of the filled NR vulcanizates, except for the tensile and tear strengths. For a given rubber matrix and silica content, the discrepancies in the results between PSi and FASi were associated with filler–filler interactions, filler particle size, and the amount of nonrubber in the vulcanizates. With the effect of the FASi particles on the mechanical properties of the NR and SBR vulcanizates considered, we recommend fly ash particles as a filler in NR at silica concentrations of 0–30 phr but not in SBR systems, except when improvement in the tensile and tear properties is required. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2119–2130, 2004  相似文献   

3.
The fatigue resistance of silica‐filled natural rubber (NR) mixes modified with phosphorylated cardanol prepolymer (PCP) was studied in comparison with similar compositions without PCP and with those containing the same dosage of a silane coupling agent (Si‐69). Considerable improvement in the fatigue resistance was observed for the PCP‐modified NR vulcanizate containing 20 phr of silica compared with the unmodified and Si‐69 modified vulcanizates. In addition, the tear strength of the PCP‐modified NR vulcanizate was higher than that of the others. Atomic force microscopy and the scanning electron microscopy of the vulcanizates showed better dispersion of silica particles in the NR matrix in the presence of PCP than in the unmodified and Si‐69‐modified NR vulcanizates. It is assumed that, at a dosage of 5 phr, PCP functions as a coupling agent between NR and the silica particles thereby improving the filler dispersion and consequently the mechanical properties of the vulcanizate. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
This study explored the feasibility of using torrefied biomass as a reinforcing filler in natural rubber compounds. Carbon black was then replaced with the torrefied biomass in elastomer formulations for concentrations varying from 0% to 100% (60 parts per hundred rubber or phr total). Their influence on the curing process, dynamic properties, and mechanical properties was investigated. Results were compared with the properties of vulcanizates containing solely carbon black fillers. Time to cure (t90) for compounds with torrefied biomass fillers increased, while filler-filler interactions (ΔG') decreased, compared to carbon black controls. At low strains, the tan δ values of the torrefied fillers vulcanizates were similar to the controls. Incorporation of torrefied biomass into natural rubber decreased compound tensile strength and modulus but increased elongation. Replacement with torrefied fillers resulted in a weaker filler network in the matrix. Still, results showed that moderate substitution concentrations (~20 phr) could be feasible for some natural rubber applications.  相似文献   

5.

Guayule natural rubber (GNR) is an alternative resource of Hevea natural rubber (HNR) with 99.9% cis content in its 1,4-polyisoprene chemical backbone. In this study, compounds were formulated independently with four different reinforcing fillers such as carbon black (HAF), precipitated silica (VN3), fume silica (FUM) and nanofly ash (NFA) for the advancement of GNR based products. The cure characteristic, dynamic-mechanical performance and mechanical properties of GNR composite were studied with the reinforcing effect of different fillers on GNR. The cure characteristic results demonstrated that HAF and FUM silica filled compounds had more processing safety than VN3 and NFA filled compounds. Viscoelastic parameters of the vulcanizates were studied by dynamic mechanical analysis to estimate the glass transition characteristics and dynamic behavior. The higher storage modulus of FUM silica vulcanizate was an indication of superior filler reinforcing nature and improved rolling resistance than other filled systems. Additionally, HRTEM analysis also proved the better filler dispersion ability of FUM silica in GNR matrix. The mechanical properties were studied with a variation of each filler loading of 8, 16, and 32 phr in GNR vulcanizates. The tensile strength of each filled system increased with an increase of filler content from 8 to 32 phr. In comparison, FUM silica GNR vulcanizates exhibited better mechanical properties, therefore, it was considered as a better structure-performance composite than those of HAF, VN3 and NFA filled composites.

  相似文献   

6.
In general, silica‐filled rubber compounds contain a silane coupling agent to improve the filler dispersion and polymer–filler interactions. The silane coupling agent modifies the silica surface and makes crosslinks between the rubber and the silica. Influence of the modification of silica on the retraction behaviors of natural rubber (NR) vulcanizates reinforced with silica and carbon black was studied. Variation of the retraction behaviors of NR vulcanizates with filler composition was also investigated. The vulcanizates containing the silane coupling agent were recovered faster than those without the silane coupling agent. The recovery difference between the vulcanizates without and with the silane coupling agent increased with increased silica content. For the vulcanizates containing the silane coupling agent, the retraction behaviors were nearly the same, irrespective of filler composition. But, for the vulcanizates without the silane coupling agent, the vulcanizate was recovered more and more slowly as the silica content increased. The experimental results are explained with the polymer–filler interactions, modification of silica surface, and formation of crosslinks between silica and rubber. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 691–696, 2006  相似文献   

7.
Filler‐filled natural rubber (NR) vulcanizates were prepared by conventional laboratory‐sized two roll mills and cured using sulfuric system. The effect of thermal aging on physical properties and thermogravimetric analysis (TGA) of oil palm ash (OPA) and commercial fillers (i.e., silica vulkasil C and carbon black N330)‐filled NR vulcanizates at respective optimum loading and equal loading were studied. Before aging, the OPA‐filled vulcanizates showed comparable optimum strength as carbon black‐filled vulcanizates. The hardening of aged filler‐filled NR vulcanizates happened after aging, thereby tensile strength and elongation at break reduced while the modulus increased. Fifty phr carbon black‐filled vulcanizates showed better retention in tensile properties as compared to silica (10 phr) and OPA (1 phr). This was attributed to the addition of different filler loading and this finding was further explained when equal loading of filler‐filled vulcanizates was studied. Fourier transform infra‐red analysis showed chemical structure had changed and tensile fractured surface exhibited smooth appearance due to the deterioration in tensile properties after aging. TGA also denoted the thermal stability was depending on the amount of filler loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4474–4481, 2013  相似文献   

8.
Rice husk ash (RHA) obtained from agricultural waste, by using rice husk as a power source, is mainly composed of silica and carbon black. A two‐stage conventional mixing procedure was used to incorporate rice husk ash into natural rubber. For comparison purposes, two commercial reinforcing fillers, silica and carbon black, were also used. The effect of these fillers on cure characteristics and mechanical properties of natural rubber materials at various loadings, ranging from 0 to 40 phr, was investigated. The results indicated that RHA filler resulted in lower Mooney viscosity and shorter cure time of the natural rubber materials. The incorporation of RHA into natural rubber improved hardness but decreased tensile strength and tear strength. Other properties, such as Young's modulus and abrasion loss, show no significant change. However, RHA is characterized by a better resilience property than that of silica and carbon black. Scanning electron micrographs revealed that the dispersion of RHA filler in the rubber matrix is discontinuous, which in turn generates a weak structure compared with that of carbon black and silica. Overall results indicate that RHA can be used as a cheaper filler for natural rubber materials where improved mechanical properties are not critical. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 34–41, 2005  相似文献   

9.
Carbon black (CB) and precipitated silica are two major reinforcing fillers in rubbers. CB/silica hybrid filler is also widely used in rubbers to provide balanced properties. CB/silica‐hybrid‐filler‐filled styrene‐butadiene rubber (SBR) containing naphthenic oil (NO), soybean oil (SO) and norbornylized SO (NSO) was investigated. The swelling and curing behavior and rheological, mechanical, thermal, aging and dynamic properties were studied and compared with earlier reported data on CB‐ or silica‐filled SBR. NSO provides better scorch safety and faster cure than SO. Compared with NO, the addition of SO and NSO enhances the thermal stability and aging resistance of SBR vulcanizates. SBR/NSO vulcanizates with hybrid filler exhibit a higher tensile and tear strength than SBR/NO and SBR/SO vulcanizates. A synergistic effect in the abrasion resistance of vulcanizates containing the hybrid filler is observed. An increase of sulfur content in the hybrid‐filler‐filled SBR/NSO vulcanizates provides further improvement in abrasion resistance, wet traction and rolling resistance. © 2017 Society of Chemical Industry  相似文献   

10.
A laboratory‐sized two‐roll mill was used to incorporate rice husk ash into natural rubber (NR). A conventional vulcanization system was used for curing and cure studies were carried out on a Monsanto rheometer. Physical testing of the NR vulcanizates involved determining tensile and tear resistances and hardness. Swelling behavior of NR compounds and scanning electron microscopy were used to investigate the interaction between rice husk ash and natural rubber. Also, dynamical mechanical thermal analysis was used to assess filler–rubber interactions in terms of storage modulus (E′) and loss tangent (tan δ). For comparison purposes, two commercial fillers, precipitated silica (Zeosil‐175) and carbon black (N774), were also used. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2331–2346, 2002  相似文献   

11.
Rice husk ash is mainly composed of silica and carbon black remaining from incomplete combustion. Both silica and carbon black have long been recognized as the main reinforcing fillers used in the rubber industry to enhance certain properties of rubber vulcanizates, such as modulus and tensile strength. In this study, two grades of rice husk ash (low‐ and high‐carbon contents) were used as filler in natural rubber. Comparison was made of the reinforcing effect between rice husk ashes and other commercial fillers such as talcum, china clay, calcium carbonate, silica, and carbon black. Fourier transform infrared spectroscopy (FTIR) analysis was employed to study the presence of functional groups on the ash surface. The effect of silane coupling agent, bis(3‐triethoxysilylpropyl)tetrasulfane (Si‐69), on the properties of ash‐filled vulcanizates was also investigated. It was found that both grades of rice husk ash provide inferior mechanical properties (tensile strength, modulus, hardness, abrasion resistance, and tear strength) in comparison with reinforcing fillers such as silica and carbon black. However, the mechanical properties of the vulcanizates filled with rice husk ash are comparable to those filled with inert fillers. The addition of silane‐coupling agent has little effect on the properties of the ash‐filled vulcanizates. This is simply due to the lack of silanol groups on the ash surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2485–2493, 2002  相似文献   

12.
Filler dispersion is a critical factor in determining the properties of filled rubber composites. Silica has a high density of silanol groups on the surface, which lead to strong filler–filler interactions and a poor filler dispersions. A cure accelerator, N‐tert‐butyl‐2‐benzothiazole sulfenamide (TBBS), was found to improve filler dispersion in silica‐filled natural rubber (NR) compounds. For the silica‐filled NR compounds without the silane coupling agent, the reversion ratio generally increased with increase in TBBS content, whereas those of the silica‐filled NR compounds containing the silane coupling agent and carbon black‐filled NR compounds decreased linearly. The tensile strength of the silica‐filled NR vulcanizate without the silane coupling agent increased as the TBBS content increased, whereas carbon black‐filled samples did not show a specific trend. The experimental results were explained by TBBS adsorption on the silica surface and the improvement of silica dispersion with the aid of TBBS. Copyright © 2003 Society of Chemical Industry  相似文献   

13.
Coal shale is considered a waste material in coal mining and washing processes. It comprises both inorganic and organic components. In this study, two kinds of coal shale were microcracked, burned, modified by enoxidation natural rubber (ENR), and then used as reinforcing fillers for natural rubber (NR). The NR vulcanizates reinforced with this modified filler were characterized by bounded rubber content, apparent crosslink density, and various mechanical property tests. The results show that the ultramicro coal‐shale powder was a good filler for NR. It could be mixed quickly, and it dispersed well in NR, which resulted in a significant enhancement. After modification by ENR, the reinforcement properties were improved further. The results suggest that this new type of filler could be used as a semireinforcing filler to replace or partially replace carbon black. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1397–1400, 2004  相似文献   

14.
Because silica has strong filler–filler interactions, a silica‐filled rubber compound is characterized by a poor dispersion of the filler. Properties of silica‐filled natural rubber (NR) compounds were improved using polychloroprene (chloroprene rubber [CR]). The bound rubber content of the compound increases and the filler dispersion is also improved by adding CR to the compound. Physical properties such as modulus, tensile strength, abrasion, and crack resistance are improved by adding CR. Elongation at break of the vulcanizates containing CR is longer than that of the vulcanizate without CR, although crosslink density of the former is higher than that of the latter. The improved physical properties are attributed to the good dispersion of silica by adding CR. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2609–2616, 2002  相似文献   

15.
The incompatibility between hydrophilic silica and hydrophobic rubber is an important problem on using silica in nonpolar rubber. In this study, hydroxyl telechelic natural rubber (HTNR) that contains hydroxyl‐terminated groups was introduced into silica‐reinforced natural rubber (NR) in order to improve the bonding strength between rubber and silica. The properties of silica‐reinforced NR compounds and vulcanizates as a function of varying silica contents were evaluated at a fixed HTNR concentration at 8% wt/wt of silica content. The results show that the improvement of silica dispersion and decreasing of filler–filler interactions (Payne effect) were obtained in the NR compounds and vulcanizates with HTNR addition. The enhancements in tensile properties, crosslink density, abrasion resistance, heat build‐up, and thermal properties of the silica‐reinforced NR vulcanizates with added HTNR confirmed that HTNR performed good as interfacial modifier of silica. In the study, the optimum properties of silica‐reinforced NR vulcanizate were achieved at 30 phr silica with 2.4 phr HTNR. However, HTNR still showed poorer efficiency than the synergy between commercial silane coupling agent, bis [3‐(triethoxysilyl) propyl] tetrasulphide (TESPT) and diphenylguanidine (DPG) when used in silica‐reinforced NR vulcanizate. J. VINYL ADDIT. TECHNOL., 26:291–303, 2020. © 2019 Society of Plastics Engineers  相似文献   

16.
Natural rubber (NR) vulcanizates exhibit good mechanical properties compared to vulcanizates of synthetic rubbers. Incorporation of a conventional filler at higher loadings to NR enhances its modulus, while reduction in tensile strength and elongation. This paper presents a new strategy for development of a NR‐clay nanocomposite with enhanced mechanical properties by incorporation of lower loadings (2–8 phr) of cetyl trimethyl ammonium bromide modified montmorillonite clay (OMMT‐C) under acid‐free environment. The effect of OMMT‐C loading on cure characteristics, rubber‐filler interactions, crosslink density, dynamic mechanical thermal properties, and mechanical properties were evaluated. Incorporation of OMMT‐C accelerated the vulcanization process and enhanced mechanical properties. X‐ray diffraction analysis and scanning electron microscopy images revealed that the formation of intercalated clay structures at lower OMMT‐C loadings, and clay aggregates at higher loadings. A nanocomposite at OMMT‐C loading of 2 phr exhibited the best balanced mechanical properties, and was associated with highest crosslink density and rubber–filler interactions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46502.  相似文献   

17.
Lime kiln dust (LKD) obtained from kraft chemical recovery systems by conversion of calcium carbonate (CaCO3) back into calcium oxide (CaO) for reuse in the causticizing process, is mainly composed of CaCO3. A two‐stage conventional mixing procedure was used to incorporate LKD into natural rubber (NR). For comparison purposes, four commercial fillers, stearic acid coated CaCO3, ground CaCO3, silica, and carbon black, were also used. The effect of these fillers on the curing characteristics and mechanical properties of NR materials at various loadings ranging from 0 to 60 phr were studied. The results indicate that the use of LKD filler resulted in a lower Mooney viscosity and shorter curing time in the NR materials. The incorporation of LKD into NR improved the Young's modulus and hardness but decreased the tensile strength and tear strength. However, LKD was better in processability than the commercial fillers. Scanning electron micrographs revealed that the morphology of the rubbers filled with reinforcing fillers, such as silica and carbon black, was finer and more homogeneous compared to the those of the rubbers filled with LKD and commercial CaCO3. The dispersion of LKD and commercial CaCO3 fillers in the rubber matrix was discontinuous, which in turn, generated a weak structure compared with the reinforcing fillers. According to these observations, LKD could be used as a cheaper filler for NR materials where improved mechanical properties are not critical. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
《Polymer Composites》2017,38(7):1427-1437
To achieve dramatic improvements in the performance of natural rubber (NR), the graphite oxide nanosheets (GON)‐reinforced NR nanocomposites have been prepared through solution mixing on the basis of pretreatment of graphite. The mechanical and thermal properties of GON/NR nanocomposites were characterized in contrast to the carbon black (CB)/NR nanocomposite. The mechanical properties of the GON‐reinforced NR showed a considerable increase compared to the neat NR and traditional CB/NR nanocomposite. The initial modulus of pure NR was increased for up to 53.6% when 7 wt% GON is incorporated. The modulus and strength of NR with GON appear to be superior to those of CB with the same filler content. The dispersion state of the nanofillers into NR was investigated by scanning electron microscopy and X‐ray diffraction, and the results indicated that nanofillers have been dispersed homogeneously in the NR matrix. Fourier transform infrared spectra showed possible interfacial interactions between fillers and NR matrix. Differential scanning calorimetry and thermogravimetric analysis showed that the T g and thermal decomposition temperature of NR slightly increased with the addition of the fillers, especially for that of GON/NR nanocomposites. According to this study, application of the physical and mechanical properties of GON to NR can result in rubber products which have improved mechanical, physical, and thermal properties, compared with existing NR products reinforced with CB. POLYM. COMPOS., 38:1427–1437, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
Bio‐based polymers and fillers draw a significant interest. Focus of this work is to use ground pistachio shell as alternative filler in a model natural rubber/styrene–butadiene rubber‐based conveyor belt compound. Compounds were prepared using a laboratory two‐roll mill by partial replacing of carbon black with pistachio shell. Cure characteristics, mechanical, thermal, morphological, and abrasion properties of pistachio shell containing vulcanizates have been studied. Increasing pistachio shell loading causes lower cure extent and lower tensile strength. However, abrasion resistance is significantly improved by incorporation of pistachio shell. Benefits of using pistachio shell as filler may include producing low price, environmentally friendly, and high abrasion resistant vulcanizates when some loses in tensile properties can be tolerated. POLYM. COMPOS., 35:245–252, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
The carbon–silica dual phase filler (CSDPF) was modified by ionic liquids (ILs): 1‐allyl‐3‐methyl‐imidazolium chloride (AMI) and 1‐butlyl‐3‐methyl‐imidazolium hexafluorophosphate (BMI). The modified CSDPF was then incorporated into natural rubber (NR) through mechanical mixing. The interactions between CSDPF and ILs were investigated using differential scanning calorimetry (DSC), Fourier‐transform infrared spectroscopy (FTIR), and Raman spectroscopy. The bound rubber of NR compounds, the mechanical properties, and dynamic properties of NR vulcanizates filled with ILs modified CSDPF (ILs‐CSDPF/NR) were measured. The results showed that the AMI interacted with CSDPF through both hydrogen bonds and van der Waals forces, while the interaction between BMI and CSDPF was merely weak van der Waals force. The modification of CSDPF by ILs could improve the tensile strength, tear resistance, and fatigue life of NR vulcanizates. The AMI‐CSDPF/NR gave the superior mechanical and dynamic properties among the NR vulcanizates with the highest bound rubber content and the most homogeneous filler dispersion, which was displayed in scanning electron microscope (SEM) images. POLYM. COMPOS., 36:1721–1730, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号