首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(butylene terephthalate) (PBT) crystallization behavior is modified by blending it with acrylonitrile‐butadiene‐styrene copolymers (ABS). The effects of ABS on melting and crystallization of PBT/ABS blends have been examined. Most ABS copolymers of different rubber content and styrene/acrylonitrile ratios studied showed little effect on the melting behavior of PBT crystalline phase. However, ABS copolymer with high acrylonitrile content had a significant effect on the crystallization behavior of the PBT/ABS blends. The nucleation rate of the PBT crystalline phase decreased due to the presence of the high acrylonitrile content ABS, whereas the spherulitic growth rate increased significantly. These phenomena are attributed to changes in nucleation and growth mechanisms of PBT crystalline phase promoted by ABS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 423–430, 1999  相似文献   

2.
Two commercial polyethylene samples, linear high‐density polyethylene (HDPE) and branched linear low‐density polyethylene with almost the same molecular weight distribution but different contents of short‐chain branching (SCB) were melt blended based on the consideration of practical application. Dynamic rheology analysis indicated good compatibility of all the blends with different compositions. Common differential scanning calorimeter (DSC) tests and successive self‐nucleation and annealing (SSA) treatment showed several interesting phenomena. First, without consideration of the effect of molecular weight and molecular weight distribution impact, co‐crystallization occurred at all ratios even the two components had a considerable difference in SCB distribution. Second, in SSA curves the area of the first two melting peaks, i.e., the amount of the thick lamellas of the two components showed an obvious positive deviation with the increase of HDPE content owing to the crystal perfection improved by the co‐crystallization. Essential Work of Fracture tests proved the co‐crystallization effects had a positive effect on the improvement of the resistance to crack propagation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

4.
In this work, poly(ε-caprolactone) (PCL) and liquid plasticizer were combined used to plasticize poly(vinyl chloride) (PVC), and the possibility of using PVC/PCL/plasticizer blends to fabricate soft PVC with enhanced migration resistance was investigated. Through partial replacement of liquid plasticizers in soft PVC by equal quantity of PCL, flexibility was maintained while extraction loss of plasticizer by organic solvent was reduced significantly. Furthermore, crystallization of PCL in PVC/PCL/plasticizer blends with low PCL content was observed, and crystallization rate of PCL was found to be influenced by plasticizer contents and structures. For instance, crystallization rate of PCL in PVC/PCL/diisononyl phthalate (DINP) (100/40/100) was 3.7 times faster than in PVC/PCL/DINP (100/40/80), while crystallization rate of PCL in PVC/PCL/dioctyl adipate(DOA)(100/40/100) was 8.3 times faster than in PVC/PCL/diisononyl cyclohexane-1,2-dicarboxylate (DINCH) (100/40/100). Low-field 1H NMR test manifested that different crystallization rate of PCL in PVC/PCL/plasticizer blends with different plasticizer structures was triggered by difference in plasticizers' compatibility with PVC, that is, the number of interaction point between PVC and plasticizers. It is concluded that PCL crystallization favored by liquid plasticizers in PVC/PCL/plasticizer blends was induced by interaction competition between PVC/plasticizer and PVC/PCL. As plasticizer content increases or its compatibility with PVC decreases, interaction competition becomes more intense and consequently faster crystallization of PCL occurs. Thus, to obtain soft PVC products with improve migration resistance while avoiding PCL crystallization, the total content of plasticizer (including both liquid plasticizer and PCL) should be lower than 66 phr (40 wt %). © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48803.  相似文献   

5.
Melt rheological properties of PBT/SEBS and PBT/SEBS/SEBS‐g‐MA blends at SEBS volume fraction (Φd) = 0.00–0.38 were studied at 240°C, 250°C and 260°C using a capillary rheometer. The compatibilizer SEBS‐g‐MA addition resulted in significant reduction in the dynamic interfacial tension which in turn led to increased phase adhesion. The power law exponent n decreased with increasing Φd and increasing temperature for both the compatiblized and uncompatiblized blends. The consistency index of PBT/SEBS increased with increasing Φd but were smaller than those of PBT/SEBS/SEBS‐g‐MA blends. Melt elasticity such as die swell and first normal stress difference increased with Φd. Variations of first normal stress coefficient function (ψ1), recoverable shear strain (γR), relaxation time (λ), and shear compliance (Jc) values versus shear rate were analyzed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41402.  相似文献   

6.
Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3‐hydroxybutyrate with 3‐hydroxyvalerate (PHBV) containing 8 mol % 3‐hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end‐capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4054–4060, 2003  相似文献   

7.
Polypropylene‐based impact copolymers are a complex composition of matrix material, a dispersed phase and many optional modifiers. The final heterophasic morphology of such systems is influenced significantly by the processing step, adding an additional level of complexity to understanding the structure‐property relation. This topic has hardly been studied so far. The effect of thermal history and shear flow on the solidification process of three different compositions of a polypropylene‐based impact copolymer, i.e., one base material and two compounds with either high density polyethylene or ethylene‐co‐octene added, is investigated. Samples are examined using differential scanning calorimetry, extended dilatometry, transmissions electron microscopy, and finally, tensile testing. With flow, the materials show pronounced flow‐enhanced crystallization of the matrix material and deformed filler content. Compared to the base polymer, the stress–strain response of the compounded samples shows a lower yield stress and more pronounced influence of shear, reflected in the increasing strain hardening modulus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42040.  相似文献   

8.
Polypropylene (PP)/metallocene‐catalyzed polyethylene elastomer (mPE) blends were prepared in a twin‐screw extruder. The melting behavior, crystallization behavior, and isothermal crystallization kinetics of the blends were studied with differential scanning calorimetry. The results showed that PP and mPE were partially miscible and that the addition of mPE shifted the melting peak of PP to a lower temperature but the crystallization temperature to a higher temperature, demonstrating a dilution effect of mPE on PP. The isothermal crystallization kinetics of the blends were described with the Avrami equation. The values of the Avrami exponent indicated that the nucleation mechanism of the blends was heterogeneous, the growth of spherulites was almost three‐dimensional, and the crystallization mechanism of PP was not affected much by mPE. At the same time, the Avrami exponents of the blends were higher than that of pure PP, and this showed that the addition of mPE helped PP to form more perfect spherulites. The crystallization rate of PP was increased by mPE because the dilution effect of mPE on PP increased the mobility of PP chains. The crystallization activation energy was estimated with the Arrhenius equation, and the nucleation constant was determined by the Hoffman–Lauritzen theory. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
The rheological behaviors of noncompatibilized and compatibilized polypropylene/polyethylene terephthalate blends (80/20) in relation with their morphology were studied at two constant levels using maleic anhydride‐modified styrene‐ethylene‐butylene‐styrene polymer. By scanning electron microscopy of cryofractured surfaces, the morphology of the blends was examined after etching. The frequency sweep and step strain experiments were carried out for the blends. The frequency sweep results indicated that increasing the compatibilizer causes behavioral changes of the rheological properties, which could be related to the aggregation of the dispersed particles with rubbery shell. Also, the frequency sweep and step strain experiments in linear region, after cessation of simple steady shear flow with various preshear rates (higher shear stress values than Gp), were done on compatibilized blend. The results showed that the morphology characteristics, defined by the aggregation of the dispersed particles based on rheological experimental data, were destroyed and replaced by an alignment in the flow direction for present imposed shear rates. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Two 1,2‐polybutadiene samples, ie syndiotactic 1,2‐polybutadiene (sPB) and atactic 1,2‐polybutadiene (aPB), were synthesized by using the same Iron(III ) catalyst system, although with changing contents of the third catalyst component. Effects of the composition of aPB on the crystallization behavior of sPB have been characterized by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). Analysis of the results indicates that the intensity of the (010) peak of sPB is influenced much more easily than that of the (200)/(110) peak by the amorphous aPB sample, but the structure of sPB does not change with the changing composition of sPB. aPB is thermodynamically miscible with sPB in the melt, and retards the melt crystallization of sPB. At the same time, non‐isothermal crystallization kinetic studies of neat sPB and 1/2.5 blends were carried out by DSC. The Avrami equations modified by Jeziorny and Privalko, were used to fit the primary stage of the non‐isothermal crystallizations of neat sPB and the 1/2.5 blends. A larger Avrami exponent for neat sPB than for the blends was observed, and possible reasons are discussed. The activation energies (ΔE) were determined to be ?88 and ?106 kJ mol?1 by the isoconversional Friedman method for neat sPB and sPB in the blends, respectively. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
We investigated the light transmittance of an immiscible polymer blend comprising a copolymer of ethylene and vinyl acetate (EVA) and a terpolymer of vinyl butyral, vinyl alcohol, and vinyl acetate (PVB). Both EVA and PVB are used in the interlayers of laminated glass. We found that the transparency of the blend depends on the ambient temperature. This can be attributed to the difference in the temperature dependence of the refractive index between EVA and PVB. The blend has good transparency at room temperature because the difference between the refractive indices of its components is minimal. At high or low temperatures, however, the blend becomes opaque owing to light scattering. The addition of a plasticizer favorably affects the temperature range over which the blend exhibits high transparency, because the refractive index and its temperature dependence are affected by the plasticizer. We also evaluated the interphase transfer of a plasticizer between EVA and PVB at various temperatures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45927.  相似文献   

12.
Miscibility, isothermal melt crystallization kinetics, spherulitic morphology and growth rates, and crystal structure of completely biodegradable poly(ε‐caprolactone) (PCL)/tannic acid (TA) blends were studied by differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction in detail in this work. PCL and TA are miscible as evidenced by the single composition dependent glass transition temperature over the whole compositions range and the depression of equilibrium melting point of PCL in the PCL/TA blends. Isothermal melt crystallization kinetics of neat PCL and an 80/20 PCL/TA blend was investigated and analyzed by the Avrami equation. The overall crystallization rates of PCL decrease with increasing crystallization temperature for both neat PCL and the PCL/TA blend; moreover, the overall crystallization rate of PCL is slower in the PCL/TA blend than in neat PCL at a given crystallization temperature. However, the crystallization mechanism of PCL does not change despite crystallization temperature and the addition of TA. The spherulitic growth rates of PCL also decrease with increasing crystallization temperature for both neat PCL and the PCL/TA blend; moreover, blending with TA reduces the spherulitic growth rate of PCL in the PCL/TA blend. It is also found that the crystal structure of PCL is not modified in the PCL/TA blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001  相似文献   

14.
Monomer‐casting polyamide 6 (MCPA6)/polymethacrylic ionomer blends were synthesized by the in situ anionic ring‐opening polymerization of ?‐caprolactam. The polymethacrylic ionomer used in this study was a copolymer of methyl methacrylate and sodium or zinc methacrylate. Because the polymethacrylic ionomer strongly interacted with polyamide 6 (PA6) chains, it influenced the alignment of the polyamide chains. The change in the degree of the order of hydrogen bonding in MCPA6 caused by the addition of the polymethacrylic ionomer was studied with Fourier transform infrared. The change in the interaction between PA6 chains was studied with rheological measurements. The influence of the polymethacrylic ionomer on the crystallization behavior of MCPA6 was also studied with differential scanning calorimetry. The isothermal crystallization and subsequent melting behavior were investigated at the designated temperature. The commonly used Avrami equation was used to fit the primary stage of the isothermal crystallization. The Avrami exponent (n) values were evaluated to be 2 < n < 3 for the neat MCPA6 and MCPA6/polymethacrylic ionomer blends. The polymethacrylic ionomer, acting as a stumbling‐block agent in the blends, decelerated the crystallization rate with the half‐time of crystallization increasing. The polymethacrylic ionomer made the molecular chains of MCPA6 more difficult to crystallize during the isothermal crystallization process. More less perfect crystals formed in the MCPA6/polymethacrylic ionomer blends because of the interaction between the MCPA6 molecular chains and polymethacrylic ionomer. The crystallinity of the blends was depressed by the addition of the polymethacrylic ionomer. The thermal stability was also studied with thermogravimetric analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A uniaxial tensile test was performed for polycarbonate (PC)/high‐density polyethylene (HDPE)/ethylene–vinyl acetate copolymer (EVA) blends with a fixed EVA content but various PC contents. The double‐yielding phenomenon and its composition dependence, as observed in the PC/HDPE blend, were again detected. EVA did not serve as a successful compatibilizer of PC and HDPE in the PC/HDPE/EVA blend. The incorporation of EVA resulted in a larger size and a more irregular shape of the PC fibers, as indicated in the scanning electron microscope observations; this, consequently, produced a higher serious stress concentration in the blend. This more complicated and instable morphology produced different double‐yielding behaviors in the PC/HDPE/EVA blends compared with the binary one. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
PET/PEN共混体系的研究进展   总被引:1,自引:0,他引:1  
主要综述了PET/PEN共混体系的研究进展,重点讨论了PET/PEN共混体系的相容性、酯交换反应、热性能以及结晶性能,并对其在国内外应用前景做了展望。  相似文献   

17.
Two reactor blends of linear and branched polyethylene resins with bimodal molecular weight distributions were synthesized in a one‐reactor polymerization process through the combination of 2,6‐bis[1‐(2,6‐dimethyphenylimino)pyridyl]cobalt dichloride ( 1 ) and 2,3‐bis(2,6‐diisopropylphenyl)butanediimine nickel dibromide ( 2 ) or 1,2‐bis(2,6‐diisopropylphenyl)cyclohexene diimine nickel dibromide ( 3 ) in the presence of modified methylaluminoxane. The linear correlation between the catalyst activity and concentration of the nickel compounds suggested that the catalysts performed independently of one another. The molecular weights, molecular weight distributions, and crystalline and phase structures of the blends were investigated with a combination of high‐temperature gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, and small‐angle X‐ray scattering techniques. The branching degree of the polyethylene produced with 3 was much higher than the branching degree of the sample produced with 2 , although their molecular weights were relatively close. In addition, the crystallization rate, melting temperature, degree of crystallinity, and crystallization temperature of more highly branched blends produced with 1 / 3 were lower. The long periods and thickness of the crystalline region were greatly influenced by the addition of highly branched polyethylene. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The crystallization behavior of oligoester blends prepared from crystalline poly(hexanediol adipate) (PHA) and amorphous poly(ethylene diethylene glycol adipate) (PEDEA) was studied using POM, WAXD, and DSC. The crystal form of both PHA and the blends are spherulites. The crystallinity, melting enthalpies, and crystallization rate increased with increased PHA content in the blends. Two sharp diffraction peaks of each blend were detected at the same position, where, respectively, 2θ = 21.3° and 24.1°. The research on the crystallization kinetics showed that the Avrami exponent of all the oligoester blends is approximately 4. It was demonstrated that the crystallization mechanism of PHA is not disturbed by amorphous PEDEA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1363–1368, 2002; DOI 10.1002/app.10268  相似文献   

19.
The influence of the addition of high‐impact polystyrene (HIPS) on polypropylene (PP) photodegradation was studied with blends obtained by extrusion with and without styrene–butadiene–styrene (SBS) copolymer (10 wt % with respect to the dispersed phase). The concentrations of HIPS ranged from 10 to 30 wt %. The blends and pure materials were exposed for periods of up to 15 weeks of UV irradiation; their mechanical properties (tensile and impact), fracture surface, and melt flow indices were monitored. After 3 weeks of UV exposure, all of the materials presented mechanical properties of the same order of magnitude. However, for times of exposure greater than 3 weeks, an increasing concentration of HIPS resulted in a better photostability of PP. These results were explained in light of morphological observations. This increase of photostability was even greater when SBS was added to the blends. It was more difficult to measure the melt flow index of the binary PP/HIPS blends than that of PP for low concentrations of HIPS; this was most likely due to energy transfer between the blend domains during photodegradation. This phenomenon was not observed for the ternary blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
2 vol.‐% TiO2 particles were incorporated into PET/PP blends with and without MA‐grafted PP compatibilizer. During extrusion of the PET/PP/TiO2 composites the TiO2 particles migrated from the PP matrix to the PET‐dispersed phase irrespective of the blending route. For the PET/PP/PP‐g‐MA/TiO2 composites, however, the location of TiO2 depended on the blending sequence. The preferred location of the TiO2 nanoparticles was confirmed by SEM pictures taken from the chemically etched surface of the blends. The observed migration behavior was traced to differences in the interfacial tensions between TiO2 and PET and TiO2 and PP, and to TiO2 encapsulation in one of the blend components during the related blending procedure.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号