首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
乳液型丙烯酸酯压敏胶的合成与改性研究进展   总被引:1,自引:0,他引:1  
介绍了近年来丙烯酸酯PSA(压敏胶)的性能特点、各种改性方法(包括细乳液聚合、增黏树脂改性、改变PSA微观结构、聚合型乳化剂改性和有机硅改性等)的研究进展。开发多功能化的高剪切强度、高剥离强度、高粘接强度和高黏性的环保型PSA,是该研究领域的发展方向。  相似文献   

2.
保护膜用压敏胶剥离强度增幅研究   总被引:1,自引:1,他引:0  
采用预乳化半连续聚合法合成了保护膜用乳液型压敏胶(PSA),探讨了单体、乳化剂、引发剂、缓冲剂和交联剂等对乳液型PSA剥离强度增幅的影响。结果表明:乳液型PSA剥离强度增幅随丙烯酸丁酯(BA)或复合乳化剂用量的增加呈先降后升的态势,随丙烯酸(AA)或缓冲剂用量的增加而增大,随苯乙烯(St)、丙烯酸-2-羟丙酯(HPA)或引发剂用量的增加而减小;当w(BA)=85%时,剥离强度增幅最小;大分子有机硅和交联剂的加入能明显降低PSA剥离强度增幅,当w(大分子有机硅)=1.0%时,剥离强度增幅最小;当加入相同用量的交联剂GA240或SC-100时,前者使PSA的剥离强度增幅更低。  相似文献   

3.
The stability of hydroxyl polyacrylate emulsion was studied from two aspects of the structure of latex particles and polymerization conditions. Waterborne polyacrylate was prepared through seeded semicontinuous emulsion polymerization method with pre‐emulsification process. HEMA was used to provide a high content of hydroxyl group, and the reactive emulsifier SE‐10 was introduced to substitute for the traditional emulsifier. The best conditions including polymerization process and temperature, monomer types and dropping time were determined, and the effects of emulsifier content and addition method, HEMA content, chain transfer agent content, and soft/hard monomer ratio on the properties of emulsion were investigated. Through the optimization of polymerization conditions and the control of the structure of particles, we have successfully synthesized the core‐shell structure of polyacrylate emulsion with a good appearance, low viscosity and a solid content of 46.5%. The hydroxyl polyacrylate exhibits good performance, which has great potential in development and application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44844.  相似文献   

4.
以丙烯酸酯类单体为主要原料,将脲基功能单体[MAEEU(甲基丙烯酰胺乙基乙撑脲)]和DAAM(双丙酮丙烯酰胺)引入体系中,采用半连续乳液聚合法制备改性丙烯酸酯PSA(压敏胶)乳液。研究结果表明:MAEEU在乳液聚合后期加入且w(MAEEU)=3%时,PSA乳液的综合性能(如初粘力、持粘力、剥离强度和耐水性等)相对最好;此时PSA的Tg(玻璃化转变温度)从-36.47℃升至-8.95℃,说明在乳液成膜过程中MAEEU和DAAM可发生交联反应,并且交联效果明显;脲基功能单体的使用为提高乳液型PSA性能的研究提供了新的方法 。  相似文献   

5.
The stringiness of crosslinked polyacrylic pressure‐sensitive adhesive (PSA) was observed during 90° peeling under the constant peel load. The random copolymer of butyl acrylate with 5 wt % acrylic acid crosslinked by N,N,N′,N′‐tetraglycidyl‐m‐xylenediamine was used as PSA. All observed stringiness upon peeling was sawtooth‐shaped, but it could be classified into three types dependent on the degree of crosslinking. The typical sawtooth‐shaped stringiness with interfacial failure was observed at the relatively higher crosslinker content ranging from 0.008 to 0.016 chemical equivalents (Eq.), where the PSA has high cohesive strength and low interfacial adhesion. The frame formed at the front end of stringiness at the content ranging from 0.002 to 0.004 Eq. Sufficient interfacial adhesion and deformability generate large internal deformation of the PSA layer. Internal deformation occurred preferentially over peeling as a result of front frame formation. The mode of peeling was changed from cohesive failure to interfacial failure in this range of crosslinker content. The sawtooth‐shaped with cohesive failure was observed at the lower content ranging from 0 to 0.001 Eq. The PSA has high interfacial adhesion and low cohesive strength, and thus exhibited cohesive failure. The PSA after peeling remained in the shape of belts. It was found that the shape of stringiness is strongly dependent on the balance between the interfacial adhesion and the cohesive strength of PSA. When the sawtooth‐shaped stringiness with frame formed, the peeling rate was lowest. This means the peel strength should be the maximum in this shape of stringiness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40336.  相似文献   

6.
耐热性乳液型丙烯酸酯压敏胶的合成   总被引:1,自引:0,他引:1  
采用种子乳液聚合法合成丙烯酸酯压敏胶,利用自交联单体N-羟甲基丙烯酰胺(NMA)提高其耐热性能,并采用反应型乳化剂DNS-86进一步提高压敏胶综合性能。研究了不同软硬单体用量比和功能单体配比对压敏胶性能的影响,探讨了自交联功能单体用量压敏胶耐热性能的影响,讨论了反应性乳化剂用量对压敏胶性能的贡献。结果表明:以最佳配方所制备出的乳液型压敏胶,其180°耐热剥离强度达到220N/m,耐热初粘力为11号钢球,耐热持粘力大于36h,固体质量分数为50%,粘度为460mPa·s。  相似文献   

7.
The manufacture of linear low‐density polyethylene (LLDPE) is of great significance in academia and industry. The employment of a single monomer, i.e. ethylene, to produce LLDPE by introducing two catalysts into one reactor to conduct ethylene copolymerization with in situ‐generated α‐olefins has proved to be an effective way in this case. Moreover, immobilization of catalysts affords LLDPE with better morphology and improved physical properties. An iron‐based diimine complex immobilized on methylaluminoxane (MAO)‐treated mesoporous molecular sieves was used to oligomerize ethylene to α‐olefins with improved selectivity to lower molar mass fractions. Based on this, zirconocene compound was also supported on mesoporous molecular sieves to comprise a two‐catalyst system to produce LLDPE from a single ethylene monomer. Copolymerization performed at both atmospheric and high pressure produced LLDPE of high molecular weight and broad molecular weight distribution without using MAO during the polymerization processes. Physical and mechanical measurements evidenced significant increases in tensile strength, tensile modulus and Izod impact strength. A marked shear‐thinning phenomenon and improved storage modulus of LLDPE produced using catalysts supported on MCM‐41 and SBA‐15 mesoporous molecular sieves indicated a stronger interfacial interaction between the molecular sieve support and the polymeric matrix. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
The surface modification of monodisperse‐crosslinked polymeric microspheres was carried out by introducing hydroxyl groups on the surface and utilizing the redox initiation system. The emulsions of the second monomer mixture were swollen into the monodisperse PS seed particles. The hydroxyl groups were introduced by hydrolysis of the acetate groups on the surface of microspheres. Ceric ammonium sulfate in sulfuric acid solution was employed to graft the acrylic monomer onto the polymeric microspheres. The surface characteristics of the surface‐modified particles were confirmed by FTIR, SEM, and TGA measurements. From the FE‐TEM image, a uniform coating layer was confirmed on the surface of microsphere. In DSC analysis, only an exothermal peak appeared when high content of DVB was used in the seeded polymerization, while, Tgs emerged after hydrolysis and graft polymerization using the low content of DVB in the second monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1349–1356, 2006  相似文献   

9.
以丙烯酸丁酯(BA)、苯乙烯(St)、丙烯酸羟乙酯(HEA)和β-羧乙基丙烯酸酯(β-CEA)为共聚单体,烯丙氧基壬基酚丙醇聚氧乙烯(10)醚硫酸铵(DNS-86)为反应型乳化剂,采用半连续预乳化乳液聚合法制备出一种高剥离力苯丙乳液PSA(压敏胶)。研究结果表明:当m(BA)∶m(St)=9∶1、w(DNS-86)=2.5%、w(过硫酸铵)=0.5%~0.6%、聚合温度为78~80℃和聚合时间为4 h时,相应苯丙乳液PSA的黏度、初粘力、持粘力和180°剥离强度俱佳;高剥离力苯丙乳液PSA的性价比较高,具有广阔的市场应用前景。  相似文献   

10.
A series of novel quartz‐fiber‐cloth‐reinforced polyimide substrates with low dielectric constants were successfully prepared. For this purpose, the A‐stage polyimide solution was first synthesized via a polymerization‐of‐monomer‐reactant procedure with 2,2′‐bis(trifluoromethyl)benzidine and 3,3′,4,4′‐oxydiphthalic anhydride as the monomers, and cis?5‐norbornene‐endo‐2,3‐dicarboxylic anhydride as the endcap. Then, an A‐stage polyimide solution (TOPI) was impregnated with quartz‐fiber cloth (QF) to afford the prepregs, which were thermally molded into the final substrate composites. The influence of the curing temperature and the resin content on the mechanical properties of the composite were examined. The composites exhibited a high glass‐transition temperature over 360°C, a low and steady dielectric constant below 3.2 at a test frequency of 1–12 GHz, and a volume resistance over 1.8 × 1017 Ω cm. Meanwhile, they also showed a high mechanical strength with flexural and impact strengths in ranges 845–881 MPa and 141–155 KJ/m2, respectively. The excellent mechanical and thermal properties and good dielectric properties indicated that they are good candidates for integrated circuit packaging substrates. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42358.  相似文献   

11.
Acrylic copolymers are prepared by radical polymerization of 2‐ethylhexyl acrylate, ethyl acrylate, and acrylic acid followed by crosslinking to manufacture the pressure‐sensitive adhesives (PSAs) for silicon wafer protection. Both higher reliability and wettability are required for the protective acrylic PSAs in the semiconductor processing applications. The siloxane linkages are introduced in the acrylic PSAs via crosslinking with siloxane‐containing crosslinking agent to modify the thermal and wetting properties of PSAs efficiently. The more efficient formation of crosslinked network structure was achieved with higher content of tetra‐functional crosslinking agent, and the surface energy of PSAs decreased significantly with increasing the content of siloxane linkage resulting in the improved areal wetting rate. The thermal stability of PSAs was also improved significantly by incorporation of siloxane linkages. The adhesion properties such as peel strength and probe tack of acrylic PSAs decreased significantly by increasing the content of either crosslinking agent or siloxane linkage. The acrylic PSA with siloxane group showed both satisfactory wetting and clean debonding properties for the optimal protection of thin silicon wafers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Acrylic‐based superabsorbent polymers with partial‐neutralized acrylic acid were synthesized by inverse suspension polymerization. The effects of reaction parameters, including the concentration of crosslinking agent and initiator, the neutralization degree of monomer, the monomer concentration, and phase ratio of a system, on the water absorption have been investigated. Furthermore, to improve the properties of salt‐resistance and antielectrolyte for the polymer, acrylamide monomer containing nonionic and hydrophilic groups was introduced into the system, which can suppress the salt effect and homoion effect. The water absorption Q5/3 is proportional to the reciprocal of ionic strength, 1/S, which follows Flory's elasticity gel theory. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 619–624, 2004  相似文献   

13.
选用反应性乳化剂,采用预乳化半连续聚合方法,合成出了综合性能良好的保护膜用丙烯酸酯乳液压敏胶。探讨了单体组成、乳化剂和引发剂用量对压敏胶初黏力、180°剥离强度、180°剥离强度增幅及耐高温高湿老化性能的影响。结果表明:当2-EHA/BA为8/2~6/4,MMA/VAc为6/4~4/6,MAA为3份,乳化剂和引发剂用量分别为单体用量的0.75%和0.5%时,压敏胶综合性能良好,适用于PVC型材表面保护膜的制造。  相似文献   

14.
A high performance and functional properties in pressure‐sensitive adhesives (PSAs) are attractive in fundamental and industrial fields. To control the performance of PSAs, nanofillers have been loaded into them. In this study, we focused on composites of acrylic PSAs and nanodiamonds (NDs). The loaded NDs reinforced the mechanical properties and increased the performance of the PSAs. NDs in a PSA formed a network structure. In this study, we revealed that the acidic–basic state was a key factor in the control of the dispersion of the NDs. When a PSA emulsions and ND aqueous dispersion was mixed under basic conditions, the composites demonstrated higher PSA properties (tack, holding, and peeling strength). We investigated the effect of the ND loading on the PSA properties from the viewpoints of the nanostructure and acid–base interactions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46349.  相似文献   

15.
This paper traces the historical development of high temperature resistant rigid‐rod polymers. Synthesis, fiber processing, structure, properties, and applications of poly(p‐phenylene benzobisoxazole) (PBO) fibers have been discussed. After nearly 20 years of development in the United States and Japan, PBO fiber was commercialized with the trade name Zylon® in 1998. Properties of this fiber have been compared with the properties of poly(ethylene terephthalate) (PET), thermotropic polyester (Vectran®), extended chain polyethylene (Spectra®), p‐aramid (Kevlar®), m‐aramid (Nomex®), aramid copolymer (Technora®), polyimide (PBI), steel, and the experimental high compressive strength rigid‐rod polymeric fiber (PIPD, M5). PBO is currently the highest tensile modulus, highest tensile strength, and most thermally stable commercial polymeric fiber. However, PBO has low axial compressive strength and poor resistance to ultraviolet and visible radiation. The fiber also looses tensile strength in hot and humid environment. In the coming decades, further improvements in tensile strength (10–20 GPa range), compressive strength, and radiation resistance are expected in polymeric fibers. Incorporation of carbon nanotubes is expected to result in the development of next generation high performance polymeric fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 100: 791–802, 2006  相似文献   

16.
BA‐MMA‐POMA copolymer latex was successfully prepared by soap‐free emulsion polymerization of 2‐(perfluoro‐(1,1‐bisisopropyl)‐2‐propenyl)oxyethyl methacrylate(POMA) with butyl acrylate(BA), methyl methacrylate (MMA) initiated by K2S2O8 in the water. POMA was synthesized from the intermediate perfluoro nonene and 2‐hydroxyethyl methacrylate as the staring reactants. The structure of BA‐MMA‐POMA copolymer latex was investigated by Fourier transform infrared (FTIR). The characteristics of the film such as hydrophobicity and glass transition temperature were characterized with the contact angle and differential scanning calorimetry respectively. The influences of the amount of the fluorinated monomer and the initiator on the soap‐free emulsion polymerization and performance of the latex were studied. In addition, comparison with the latex prepared by the conventional emulsifier SDBS is investigated. Results show that the hydrophobicity and glass transition temperature (Tg) of the latex are increased when the fluorinated monomer is introduced to copolymerize with other monomers. The hydrophobicity can be improved further with heating. Compared with the latices prepared by using SDBS emulsifier, the latices prepared by using HMPS emulsifier have larger particle size, higher surface tension. However, the difference of their Tg is extremely minute. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
By using sodium dodecyl sulfate (SDS) as an emulsifier, polymerization of N‐butyl maleimide (NBMI) was carried out in ternary oil‐in‐water microemulsion, initiated with potassium persulfate (KPS). The kinetics of microemulsion polymerization were measured by dilatometry. The effects of initiator concentration, polymerization temperature, monomer concentration, and emulsifier concentration on polymerization kinetics were investigated. On this basis, the polymerization kinetics were discussed. The experiment result showed that the microemulsion polymerization kinetics of N‐butyl maleimide were almost consistent with the prediction of the Smith‐Ewart theory in conventional emulsion polymerization, except that the emulsifier showed a special effect on polymerization. At the same time, the polymer was characterized by IR, 1H‐NMR, DSC, and TGA. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 805–809, 2000  相似文献   

18.
Polystyrene latex particles were synthesized using a method based on emulsifier‐free miniemulsion polymerization under ultrasonic irradiation in the presence of 2,2′ azobis (2‐amidinopropane) dihydrochloride (V‐50) as a cationic ionizable water‐soluble initiator and cetyl alcohol as costabilizer. The optimized conditions were obtained by using various parameters, such as the amounts of monomer and initiator, and the time and power of ultrasonic irradiation. In optimal conditions, the latex particles appeared to be about 250 nm in diameter through scanning electron microscopy (SEM). The SEM and gel permeation chromatography (GPC) analyses and monomer conversions of emulsifier‐free miniemulsion polymerization were compared with those of conventional emulsifier‐free emulsion polymerization using V‐50 as initiator in both cases. The results showed that in the miniemulsion polymerization, the rate of polymerization (Rp) was significantly higher, and latex particles were significantly smaller than those in the conventional emulsion polymerization. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
Inverse emulsion polymerization of an aqueous solution of acrylamide (AM) in toluene is carried out using poly(methyl methacrylate)‐graft‐polyoxyethylene (PMMA‐g‐PEO) as an emulsifier. The kinetics of polymerization, morphology of the particle, and particle size of the inverse emulsion have been investigated. The rates of polymerization are found to be proportional to the initiator concentration, the monomer concentration, and the emulsifier concentration. The morphology of particles shows a spherical structure. The mechanism of inverse emulsion polymerization using amphipathic graft copolymer as the emulsifier is proposed. The resulting molecular weights of polyacrylamide are extremely high, and relate to the amphipathic graft copolymer structure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 528–534, 2001  相似文献   

20.
Poly(siloxane‐ether‐urethane)‐acrylic (PU‐AC) hybrid emulsions were prepared by introducing different hydroxyethoxypropyl‐terminated polydimethylsiloxane (PDMS) content into the acrylic‐terminated poly(ether‐urethane) backbone and then in situ copolymerizing with methyl methacrylate and butyl acrylate via emulsion process. The effects of PDMS on the particle size and viscoelastic behavior of the hybrid emulsions were investigated. Meanwhile, the hydrogen bonding, mechanical and thermal mechanical properties, water resistance, the surface gloss, and wettability of the resultant hybrid films were also studied. The results showed that all the hybrid emulsions showed shear‐thinning behaviors, and the introduction of PDMS resulted in the formation of the hybrid emulsions with increased average particle size and decreased viscosity. The chemical bonds built between PU and AC yielded higher than 73% crosslinking fraction in all the hybrid materials, but this value decreased with increasing PDMS content because PDMS reduced the hydrogen bonding interactions and enhanced the phase separation. As a result, an increase in the PDMS content led to an increase in the elongation, water resistance, surface roughness, and water hydrophobic of the films, but the tensile strength, hardness, storage modulus, and glass transitions temperature decreased. It is suggested that introduction of PDMS can provide the hybrid materials with the improved flexibility, water resistance, and surface hydrophobicity, which has potential application value in the fouling‐release coatings, biomaterials, and surface fishing. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44927.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号