首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Chitosan beads (CB) possesses low defluoridation capacity (DC) have been suitably modified by carboxylation followed by chelation with Ce(III) to enhance its DC. The carboxylated chitosan beads (CCB), which has a desirable DC of 1385 mgF?/kg, has been further chemically modified by incorporating Ce3+ ion into CCB (Ce‐CCB) and its DC was found to be 4798 mgF?/kg, whereas raw chitosan beads (CB) possesses 52 mgF?/kg only. The maximum DC of Ce‐CCB was observed at pH 7 and showed selectivity toward fluoride in presence of other coanions. The sorbent was characterized using FTIR and SEM with EDAX analysis. The sorption data was fitted with Freundlich and Langmuir isotherms and kinetic models. The calculated thermodynamic parameters, viz., ΔG°, ΔH° and ΔS° indicate the nature of fluoride sorption. A field trial was carried out with fluoride water collected from a nearby fluoride‐endemic village to test the suitability of Ce‐CCB at field conditions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Modified chitosan beads (CB) were prepared and used for the removal of Fe(III) ions from aqueous solution. The advantages of modified CB than raw CB have been explored. The sorption capacity (SC) of the modified forms of CB namely, protonated CB, carboxylated CB, and grafted CB were found to be 3533, 3905, and 4203 mg kg?1, respectively, while the raw CB showed the SC of 2913 mg kg?1 only. Batch adsorption studies were conducted to optimize various equilibrating conditions like contact time, pH, and coions. The sorbents were characterized by FTIR, WDXRF, and SEM with EDAX analysis. The sorption process has been explained with Freundlich and Langmuir isotherms. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were calculated to understand the nature of sorption. Modified CB are more selective for Fe(III) than Cu(II), which inturn higher than Cr(VI). A suitable mechanism for iron sorption onto modified CB was established. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
In the present study, PS@α‐Fe2O3 nanocomposites were prepared by chemical microemulsion polymerization approach and the ability of magnetic beads to remove Cu(II) ions from aqueous solutions in a batch media was investigated. Various physico‐chemical parameters such as pH, initial metal ion concentration, temperature, and equilibrium contact time were also studied. Adsorption mechanism of Cu2+ ions onto magnetic polymeric adsorbents has been investigated using Langmuir, Freundlich, Sips and Redlich–Petersen isotherms. The results demonstrated that the PS@α‐Fe2O3 nanocomposite is an effective adsorbent for Cu2+ ions removal. The Sips adsorption isotherm model (R2 > 0.99) was more in consistence with the adsorption isotherm data of Cu(II) ions compared to other models and the maximum adsorbed amount of copper was 34.25 mg/g. The adsorption kinetics well fitted to a pseudo second‐order kinetic model. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) were calculated from the temperature dependent sorption isotherms, and the results suggested that copper adsorption was a spontaneous and exothermic process. POLYM. ENG. SCI., 55:2735–2742, 2015. © 2015 Society of Plastics Engineers  相似文献   

4.
In this study, the availability of chitosan was systematically investigated for removal of bisphenol A (BPA, 2,2‐bis(hydroxyphenyl)propane) through the tyrosinase‐catalyzed quinone oxidation and subsequent quinone adsorption on chitosan beads. In particular, the process parameters, such as the hydrogen peroxide (H2O2)‐to‐BPA ratio, pH value, temperature, and tyrosinase dose, were discussed in detail for the enzymatic quinone oxidation. Tyrosinase‐catalyzed quinone oxidation of BPA was effectively enhanced by adding H2O2 and the optimum conditions for BPA at 0.3 mM were determined to be pH 7.0 and 40°C in the presence of H2O2 at 0.3 mM ([H2O2]/[BPA] = 1.0). Removal of BPA from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan beads was much faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The production of lactic acid from whey by Lactobacillus casei NRRL B‐441 immobilized in chitosan‐stabilized Ca‐alginate beads was investigated. Higher lactic acid production and lower cell leakage were observed with alginate–chitosan beads compared with Ca‐alginate beads. The highest lactic acid concentration (131.2 g dm?3) was obtained with cells entrapped in 1.3–1.7 mm alginate–chitosan beads prepared from 2% (w/v) Na‐alginate. The gel beads produced lactic acid for five consecutive batch fermentations without marked activity loss and deformation. Response surface methodology was used to investigate the effects of three fermentation parameters (initial sugar, yeast extract and calcium carbonate concentrations) on the concentration of lactic acid. Results of the statistical analysis showed that the fit of the model was good in all cases. Initial sugar, yeast extract and calcium carbonate concentrations had a strong linear effect on lactic acid production. The maximum lactic acid concentration of 136.3 g dm?3 was obtained at the optimum concentrations of process variables (initial sugar 147.35 g dm?3, yeast extract 28.81 g dm?3, CaCO3 97.55 g dm?3). These values were obtained by fitting of the experimental data to the model equation. The response surface methodology was found to be useful in optimizing and determining the interactions among process variables in lactic acid production using alginate–chitosan‐immobilized cells. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
Iron(III)‐loaded carboxylated polyacrylamide‐grafted sawdust was investigated as an adsorbent for the removal of phosphate from water and wastewater. The carboxylated polyacrylamide‐grafted sawdust was prepared by graft copolymerization of acrylamide and N,N′‐methylenebisacrylamide onto sawdust in the presence of an initiator, potassium peroxydisulfate. Iron(III) was strongly attached to the carboxylic acid moiety of the adsorbent. The adsorbent material exhibits a very high adsorption potential for phosphate ions. The coordinated unsaturated sites of the iron(III) complex of polymerized sawdust were considered to be the adsorption sites for phosphate ions, the predominating species being H2PO ions. Maximum removal of 97.6 and 90.3% with 2 g L?1 of the adsorbent was observed at pH 2.5 for an initial phosphate concentration of 100 and 250 μmol L?1, respectively. The adsorption process follows second‐order kinetics. Adsorption rate constants as a function of concentration and temperature and kinetic parameters, such as ΔG±, ΔH±, and ΔS±, were calculated to predict the nature of adsorption. The L‐type adsorption isotherm obtained in the sorbent indicated a favorable process and fitted the Langmuir equation model well. The adsorption capacity calculated by the Langmuir adsorption isotherm gave 3.03 × 10?4 mol g?1 of phosphate removal at 30°C and pH 2.5. The isosteric heat of adsorption was also determined at various surface loadings of the adsorbent. The adsorption efficiency toward phosphate removal was tested using industrial wastewater. Different reagents were tested for extracting phosphate ions from the spent adsorbent. About 98.2% of phosphate can be recovered from the adsorbent using 0.1M NaOH. Alkali regeneration was tried for several cycles with a view to recover the adsorbed phosphate and also to restore the adsorbent to its original state. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2541–2553, 2002  相似文献   

7.
This work is focused on the removal of Ni(II) from aqueous solutions by sorption onto newly developed magnetite‐loaded calcium alginate particles. The uptake of Ni(II) by these magnetite particles, with their mean geometrical diameter 84 and 508 μm, is best described by the Freundlich isotherm and the constants KF and 1/n were found to be 3.491 mg g?1, 0.731 and 0.793 mg g?1 and 0.907, respectively. The mean sorption energy, as determined by Dubinin‐Radushkevich isotherm for 508‐ and 84‐μm sized particles was evaluated to be 8.9 and 8.0 kJ mol?1, respectively, thus, suggesting the ion‐exchange mechanism for uptake process. Of the various kinetic models proposed, the kinetic Ni(II)‐uptake data were best interpreted by “Simple Elovich” and “Power function” as suggested by their higher regression values. The almost linear nature of plots of log(% sorption) versus log(time) was indicative of intraparticle diffusion. The values of intraparticle diffusion coefficients Kid were found to be 63.49 × 10?2 and 94.35 × 10?2 mg l?1 min0.5. The intraparticle diffusion was also confirmed by Bangham equation. Finally, various thermodynamic parameters were evaluated. The negative ΔG° indicated spontaneous nature of uptake process while positive ΔH° value suggested exothermic nature of the sorption process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
BACKGROUND: In this study, the capability of low‐cost, renewable and abundant marine biomass Posidonia oceanica (L.) for adsorptive removal of anionic and non‐ionic surfactants from aqueous solutions have been carried out in batch mode. Several experimental key parameters were investigated including exposure time, pH, temperature and initial surfactant concentration. RESULTS: It was found that the highest surfactant adsorption capacities reached at 30 °C were determined as 2.77 mg g?1 for anionic NaDBS and as 1.81 mg g?1 for non‐ionic TX‐100, both at pH 2. The biosorption process was revealed as a thermo‐dependent phenomenon. Equilibrium data were well described by the Langmuir isotherm model, suggesting therefore a homogeneous sorption surface with active sites of similar affinities. The thermodynamic constants of the adsorption process (i.e. ΔG°, ΔH° and ΔS°) were respectively evaluated as ? 8.28 kJ mol?1, 48.07 kJ mol?1 and ? 42.38 J mol?1 K?1 for NaDBS and ? 9.67 kJ mol?1, 95.13 kJ mol?1 and ? 174.09 J mol?1 K?1 for TX‐100. CONCLUSION: Based on this research, valorization of highly available Posidonia oceanica biomass, as biological adsorbent to remove anionic and non‐ionic surfactants, seems to be a promising technique, since the sorption systems studied were found to be favourable, endothermic and spontaneous. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
Heavy metal removal from wastewater is crucial for the proper management of discharged water from mining operations. This residual water is typically unusable for other purposes such as for human/animal, crop, or industrial consumption. Eco‐friendly adsorption materials are necessary to ensure the sustainable treatment of this wastewater. Therefore, the sorption of Cu(II), Cd(II), Pb(II), and Zn(II) ions onto chitosan–tripolyphosphate (CTPP) beads was investigated using real mining wastewater and prepared ion metal solutions. The effects of pH, contact time, temperature, selectivity, and maximum sorption capacity in successive batches at different concentrations were studied. The optimum sorption of cations, except for copper (pH 3) was found at pH 5. Equilibrium in the adsorption of all metals was reached at 24 h of contact. Studies of the maximum sorption capacity at different concentrations showed that the CTPP beads could adsorb 158, 55, 47, and 47 mg/g of Pb(II), Cu(II), Cd(II), and Zn(II), respectively. Experimental data for the sorption of Pb(II) were optimally correlated with the Langmuir model. The thermodynamic parameters such as the changes in enthalpy (ΔH0), entropy (ΔS0), and free energy (ΔG0) were determined. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45511.  相似文献   

10.
BACKGROUND: A new generation granular activated carbon—Bio‐Sep® beads—consist of 25% polymer (Nomex) and 75% powdered activated carbon. The porous structure and high surface area of these beads make them suitable for sorbent in adsorption columns, and for immobilization media in bioreactors. The aim of this study was to study the sorption characteristics of Bio‐Sep® beads for methyl t‐butyl ether (MTBE) and t‐butyl alcohol (TBA), and to demonstrate the advantage of their usage in a suspended growth bioreactor. RESULTS: The maximum uptake capacity of Bio‐Sep® beads for MTBE and TBA, in the studied concentration range (10–100 mg L?1), was observed to be 9.73 and 6.23 mg g?1, respectively. A 52 h desorption experiment resulted in 13.6–42.2% MTBE and 33–53% TBA desorption corresponding to the initial solid phase concentrations of 1.68–9.73 mg g?1 and 1.41–6.23 mg g?1, respectively. The sorption of TBA on the Bio‐Sep® beads was significantly hindered by the presence of MTBE. The addition of 10 g Bio‐Sep® beads (dry weight) in a suspended growth bioreactor was able to eliminate the inhibitory effect of 150 mg L?1 MTBE. CONCLUSIONS: At an equilibrium aqueous phase concentration (Ce) of 1 mg L?1, the solid phase concentration (qe) on Bio‐Sep® beads were observed as 1.44 and 0.47 mg g?1 for MTBE and TBA, respectively. The results obtained in this study indicate that Bio‐Sep® beads have reasonable sorption and desorption characteristics, which can be successfully exploited for the removal/degradation of toxic organic pollutants in high rate bioreactors. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
The calorimetric characteristics of carbon black (CB)/poly(ethylene‐co‐alkyl acrylate) composites depend on both the CB and acrylate contents. An increase of the acrylate content in the pure copolymers tends to decrease all the crystalline characteristics: Tc,n, the nonisothermal crystallization temperature; Tm, the melting temperature, and ΔHm, the melting enthalpy. CB modifies the crystallization kinetics of poly(ethylene‐co‐ethyl acrylate) (EEA) alone and in blends with poly(ethylene‐co‐24% w/w methyl acrylate) (24EMA) and poly(ethylene‐co‐35% w/w methyl acrylate) (35EMA). In the presence of CB, Tc,n, the nonisothermal crystallization temperature of EEA, increases and t1/2, the half‐crystallization time, decreases for a given isothermal crystallization temperature, Tc,i. The thermograms obtained during the melting of EEA after isothermal crystallization show multiple endotherms, suggesting that crystalline‐phase segregation has occurred. The existence of different crystalline species can be explained by the presence of fractions of different acrylate content in the copolymers as shown by SEC. Therefore, CB does not seem to have much effect on the subsequent melting temperature of EEA, Tm,s. CB also induces a lower melting enthalpy, Δ Hm, in the blends. This decrease of ΔHm appears to be constant whatever the compound, but when reported to the melting enthalpy of the polymer without CB, δΔHmHm increases with the acrylate content. A slight increase of the amorphous phase stiffness after CB introduction is noticed: The Tg of EEA/24EMA and EEA/35EMA blends increases by several degrees. Therefore, plotting ΔHm versus ΔCp shows that for the same ΔHm the ΔCp is lower in CB‐filled samples, suggesting there is some kind of rigid amorphous phase not contributing to the glass transition. We propose to explain the CB activity during the crystallization process by the existence of molecular interactions between CB and acrylate groups rather than by a pure nucleating effect. Thus, the increase of Tc,n and the decrease of ΔHm could be explained by the fact that CB separates acrylate‐rich chains from the crystallization medium, accelerating the crystallization of the acrylate‐poor chains. During such a crystallization process, CB may be preferentially localized in the more polar amorphous phase and scattered between the two crystalline phases of EEA and EXA. These blends of poly(ethylene‐co‐alkyl acrylate) copolymers with CB provide interesting materials with adjustable properties depending on the acrylate and CB contents and on the thermomechanical treatments. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 779–793, 2001  相似文献   

12.
The sorption behavior of Th(IV) and U(VI) species on two batch molds of radiation‐induced polymerized unsaturated polyester beads containing 40 wt % styrene was investigated. The distribution coefficients of both ions on the polymeric sorbents were evaluated at 30°C using 10?4 M solution and found to be 271.9 and 469.8 mL/g on the first mold and 296 and 1189.2 mL/g on the second mold for Th(VI) and U(IV), respectively. Testing the sorption data using different theories provided evidence that the sorption data accurately fit the Langmuir, Freundlich, and D‐R isotherms, indicating chemisorption occurred and that E, the mean sorption energy of thorium and uranium on the different molds of unsaturated polyester–styrene, was between 8.304 and 13.92 kJ/mol, reflecting the nature of the ion exchange. The thermodynamics of sorption were considered in order to evaluate ΔH, ΔS, and ΔG. The data showed that the sorption process was spontaneous and exothermic. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4098–4106, 2006  相似文献   

13.
Mixtures of γ‐oryzanol and β‐sitosterol were used to structure different oils (decane, limonene, sunflower oil, castor oil, and eugenol). The γ‐oryzanol and β‐sitosterol mixtures self‐assemble into double‐walled hollow tubules (~10 nm in diameter) in the oil phase, which aggregate to form a network resulting in firm organogels. The self‐assembly of the sterol molecules into tubules was studied using light scattering and rheology. By using different oils, the influence of the polarity of the oil on the self‐assembly was studied. The effects of temperature and structurant concentration on the tubuler formation process were determined and the thermodynamic theory of self‐assembly was applied to calculate the change in Gibbs free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) resulting from the aggregation of the structurants was determined. The self‐assembly was found to be enthalpy‐driven as characterized by a negative ΔH0 and ΔS0. A decreasing polarity of the oil promotes the self‐assembly leading to formation of tubules at higher temperatures and lower structurant concentrations.  相似文献   

14.
Monosize, nonporous poly(glycidyl methacrylate) [poly(GMA)] beads were prepared by dispersion polymerization. Cibacron Blue F3GA was covalently attached onto the poly(GMA) beads for adsorption of recombinant interferon‐α (rHuIFN‐α). Monosize poly(GMA) beads were characterized by scanning electron microscopy. Dye‐carrying beads (1.73 mmol/g) were used in the adsorption–elution studies. The effect of initial concentration of rHuIFN‐α, pH, ionic strength, and temperature on the adsorption efficiency was studied in a batch system. Nonspecific adsorption of rHuIFN‐α on the beads was 0.78 mg/g. Dye attachment significantly increased the rHuIFN‐α adsorption up to 181.7 mg/g. Equilibrium adsorption of rHuIFN‐α onto the dye‐carrying beads increased with increasing temperature. Negative change in free energy (ΔG0 < 0) indicated that the adsorption was a thermodynamically favorable process. ΔS and ΔH values were 146.1 J/mol K and ?37.39 kJ/mol, respectively. Significant amount of the adsorbed rHuIFN‐α (up to 97.2%) was eluted in the elution medium containing 1.0M NaCl in 1 h. To determine the effects of adsorption conditions on possible conformational changes of rHuIFN‐α structure, fluorescence spectrophotometry was employed. We concluded that dye‐affinity beads can be applied for rHuIFN‐α adsorption without causing any significant conformational changes. Repeated adsorption–elution processes showed that these beads are suitable for rHuIFN‐α adsorption. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 975–981, 2007  相似文献   

15.
Adsorption of phenol from aqueous solution onto cashew nut shell (CNS) was investigated to assess the possible use of this adsorbent. The influence of various parameters such as contact time, phenol concentration, adsorbent dose, pH, and temperature has been studied. Studies showed that the pH of aqueous solutions affected phenol removal as a result of decrease in removal efficiency with increasing solution pH. The experimental data were analysed by the Langmuir equation. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 5.405 mg/g. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° have also been evaluated and it has been found that the sorption process was feasible, spontaneous, and exothermic in nature. The pseudo‐first‐order and pseudo‐second‐order kinetic models were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phenol could be described by the pseudo‐second‐order equation, suggesting that the adsorption process is presumable a chemisorption. The CNS investigated in this study showed good application potential for the removal of phenol from aqueous solution.  相似文献   

16.
Cellulose derivative (MPCN) modified by 1,5‐diaminoethyl‐3‐hydroxy‐1,5‐diazacycloheptane (DADN) was prepared and characterized by scanning electron microscopy and elemental, and infrared analysis. MPCN and its Cu2+, Pb2+ complexes were characterized by thermogravimetric and differential thermal analysis. The coordination adsorption behavior of MPCN with divalent copper and lead ions was determined. The effects of temperature, initial pH value, and the concentration of MPCN ligand to the equilibrium adsorption were discussed. The optimum pH range of the coordination adsorption of MPCN with Cu2+ and Pb2+ is 5–6. The rate constants of the coordination reaction were found. At 323 K, the rate constant is 1.0 × 10−3 and 7.0 × 10−4 s−1 for Cu2+ and Pb2+, respectively. The thermodynamic parameters of the coordination reaction were obtained based on the experiment data of the adsorption isotherms. The coordination reaction was performed spontaneously from the data of ΔG, as follows: −21.65 and −19.41 kJ/mol and ΔS, 87.06 and 67.92 J/mol K for Cu2+ and Pb2+, respectively. The coordination ratio of DADN coordination group immobilized on cellulose beads with either metal ion is about 1 : 2 from the plot of the relation of lgD versus lgL and the capacity of saturation adsorption. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1278–1285, 1999  相似文献   

17.
BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are potential hazards in the environment owing to their toxic, carcinogenic and recalcitrant nature. Biodegradation of these compounds, although effective compared with other treatment techniques, is problematic owing to its low aqueous solubility and negligible bioavailability. The present study reports a novel method for biodegradation of PAHs using an encapsulated form of the pollutant in chitosan‐coated alginate–polyvinyl alcohol (PVA) beads. RESULTS: A suitable combination of 3% (w/v) PVA, 100 g L?1 non‐ionic surfactant Brij 30 and 0.3 silicone oil fraction in the formulation was found to be optimal in the preparation of stable emulsion. The emulsion obtained was admixed with alginate (3% w/v) to prepare suitably sized microspheres by an emulsion gelation technique, which were later coated with chitosan to yield a maximum pyrene encapsulation efficiency of 90.7%. Pyrene in silicone oil at concentration as high as 2 g L?1, when delivered through the chitosan coated alginate–PVA beads, was completely degraded by Mycobacterium frederiksbergense within 10 days without any significant lag phase. CONCLUSION: Using chitosan‐coated alginate–PVA beads sustained release of pyrene and subsequent biodegradation by M. frederiksbergense were achieved. Using the present system, complete degradation of pyrene was attained even at its very high initial concentration and within a short time period. Further advantage offered by this system seems to be negligible toxic effect of pyrene and solvents on the degrading microorganisms since these were in an encapsulated form and were not in direct contact with the organism. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Wastewater containing high concentration of ammonium‐nitrogen ( ) is not effectively addressed by biological treatment and when released into water bodies can cause eutrophication. In this study, the removal of from simulated wastewater using chitosan‐coated bentonite (CCB) was investigated. The effects of salt used, pH, CCB dosage, agitation rate, and temperature on the removal of were studied. The highest removal of 67.5% was attained at the following conditions: initial pH 4.0, CCB dose of 8.0 g, agitation rate of 150 rpm, and temperature of 35 °C. Fourier transform infrared analysis indicated two mechanisms: adsorption onto CCB involving hydrogen bonding with hydroxyl groups ( OH) and ion exchange between and cations present in the interlayer of bentonite. Experimental data follows the pseudo‐second‐order kinetic model (R2 = 0.9964) and Koble–Corrigan isotherm (R2 = 0.9705). Thermodynamic studies showed that the adsorption process is spontaneous (ΔG0 < 0), endothermic (ΔH0 > 0) in nature, and leads to an increase in randomness at the solid–solution interface (ΔS0 > 0). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45924.  相似文献   

19.
《分离科学与技术》2012,47(1):203-222
Abstract

The decontamination of lead ions from aqueous media has been investigated using styrene‐divinylbenzene copolymer beads (St‐DVB) as an adsorbent. Various physico‐chemical parameters such as selection of appropriate electrolyte, contact time, amount of adsorbent, concentration of adsorbate, effect of foreign ions, and temperature were optimized to simulate the best conditions which can be used to decontaminate lead from aqueous media using St‐DVB beads as an adsorbent. The atomic absorption spectrometric technique was used to determine the distribution of lead. Maximum adsorption was observed at 0.001 mol L?1 acid solutions (HNO3, HCl, H2SO4 and HClO4) using 0.2 g of adsorbent for 4.83×10?5 mol L?1 lead concentration in two minutes equilibration time. The adsorption data followed the Freundlich, Langmuir, and Dubinin‐Radushkevich (D‐R) isotherms over the lead concentration range of 1.207×10?3 to 2.413×10?2 mol L?1. The characteristic Freundlich constants i.e. 1/n=0.164±0.012 and A=2.345×10?3±4.480×10?5 mol g?1 have been computed for the sorption system. Langmuir isotherm gave a saturated capacity of 0.971±0.011 mmol g?1, which suggests monolayer coverage of the surface. The sorption mean free energy from D‐R isotherm was found to be 18.26±0.75 kJ mol?1 indicating chemisorption involving chemical bonding for the adsorption process. The uptake of lead increases with the rise in temperature. Thermodynamic parameters i.e. ΔG, ΔH, and ΔS have also been calculated for the system. The sorption process was found to be exothermic. The developed procedure was successfully applied for the removal of lead ions from real battery wastewater samples.  相似文献   

20.
《分离科学与技术》2012,47(4):747-756
Abstract

Rice bran, an agricultural by‐product, was used for the removal of zinc ions from aqueous solution. The work considered the determination of zinc‐biomass equilibrium data in batch system. These studies were carried out in order to determine some operational parameters of zinc sorption such as the time required for the Zinc‐biosorbent equilibrium, the effects of biomass particle size, pH, and temperature. The results showed that pH has an importance effect on zinc biosorption capacity. The biosorbent size also affects the zinc biosorption capacity. The sorption process follows pseudo‐second‐order kinetics. The intraparticle diffusion may be the rate‐controlling step involved in the adsorption zinc ions onto the rice bran up to 30 min. The equilibrium data could be best fitted by the Langmuir sorption isotherm equation over the entire concentration range (40–160 mg/dm3). Thermodynamic parameters, such as ΔG°, ΔH°, ΔS°, have been calculated. The thermodynamics of zinc ion/rice bran system indicate spontaneous and endothermic nature of the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号