首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic mechanical properties denoted by storage modulus (E′) and loss factor (tan δ) of binary and ternary systems consisting of carboxylated nitrile rubber (XNBR) filled with organic hindered phenol compound 2,2′‐methylenebis(6‐tert‐butyl‐4‐methylphenol) (AO‐2246) or/and short carbon fiber (SCF) were investigated. DMA results of binary XNBR/AO‐2246 system showed that by addition of AO‐2246, the tan δ peak maximum of XNBR was remarkably increased up to 3.5, and its peak position was also significantly shifted to room temperature, demonstrating that XNBR/AO‐2246 composite is a promising damping material. Nevertheless, application of such XNBR/AO‐2246 composite is limited due to its relatively low E′ value above glass transition temperature. Therefore, to develop a high‐performance damping material with high tan δ peak and high modulus as well as controllable tan δ peak position, the combination of organic hybridization and fiber reinforcement were adopted. DMA analysis of various ternary XNBR/AO‐2246/SCF systems revealed that by introduction of SCF, the E′ value of XNBR/AO‐2246 was increased remarkably while the tan δ peak maximum was still higher than 2.5. Thus, a new type of XNBR‐based high‐performance damping material was developed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Soluble complexes of titanium(IV) bearing sterically hindered biphenols, such as biphenol, 1,1′‐methylene di‐2‐naphthol, 2,2′‐methylene bis(4‐chlorophenol), 2,2′‐methylene bis(6‐tert‐butyl‐4‐ethyl phenol), and 2,2′ ethylidene bis(4,6‐di‐tert‐butyl phenol), were prepared and characterized. These catalyst precursors, formulated as [Ti(O∧O)X2], were active in the polymerization of ethylene at high temperatures in combination with ethylaluminum sesquichloride as a cocatalyst. The ultra‐low‐molecular‐weight polyethylenes (PEs) were linear and crystalline and displayed narrow polydispersities. The catalytic polymerization leading to PE waxes in this reaction exhibited unique properties that have potential applications in surface coatings and adhesive formulations. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1531–1539, 2007  相似文献   

3.
A novel block mercaptosilane (3‐benzothiazolthio‐1‐propyltriethoxylsilane) (Silane‐M) was synthesized and characterized by Fourier transform infrared spectra, 1H nuclear magnetic resonance, and elemental analysis. Styrene–butadiene rubber (SBR)/silica composites were prepared with Silane‐M, and its effect on the properties of materials was studied. Results show that Silane‐M can substantially improve the dispersion of silica and strengthen the reinforcement of silica for SBR vulcanizates like anchors of silica to rubber matrix. As expected, it enhances the tensile, tear strength, dynamic compression property, and resistance to abrasion of SBR/silica composites. By adding Silane‐M into the system, SBR/silica composites get superior skid resistance and high glass transition temperature (Tg). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
This work investigates mechanical properties of styrene‐butadiene rubber (SBR) composites incorporating magadiite (MGD), a synthetic layered silicate (Na2Si14O29·9H2O) with surface chemistry similar to precipitated silica used in tire tread formulations. Treatment with cetyltrimethylammonium (CTA+) expands the MGD layers and makes the interlayer face surfaces accessible to sulfur‐functional silane TESPT (Si69) and SBR, primarily during batch mixing. DMA and tensile testing of cured CMGD/SBR composites show that CTA‐treated MGD (CMGD) provides substantially higher levels of mechanical reinforcement than equivalent amounts of silica. However, CMGD/SBR composites exhibit larger loss tangent values above Tg, probably due to lower SBR‐SBR crosslink density resulting from interlayer trapping of sulfur released by Si69 during vulcanization. DMA and tensile testing also demonstrate Si69′s critical role in forming MGD‐SBR graft sites essential to mechanical reinforcement. Replacing silica with CMGD reduces composite weight without sacrificing tensile modulus, suggesting that use of CMGD in tire rubber formulations could improve vehicle energy efficiency. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44763.  相似文献   

5.
5‐Methyl‐7‐tert‐butyl‐3‐(2′hydroxyl‐5′‐methylphenyl)3H‐benzofuran‐2‐one (PCRBF2), is a better scavenger of 2,2‐diphenyl‐1‐picrylhydrazyl radicals than benzofuranone analogs without the 2′‐substituent, which indicates that PCRBF2 will cause good stabilization in polymers. To prove this further, antioxidation by PCRBF2 and other benzofuranone analogs, namely, 5‐methyl‐7‐tert‐butyl‐3‐(3′,4′‐dimethylphenyl)3H‐benzofuran‐2‐one (OXBF2) and 5‐methyl‐7‐tert‐butyl‐3‐(2′,5′‐dimethylphenyl)3H‐benzofuran‐2‐one (PXBF2), was comparatively studied in polypropylene. The resulting antioxidant activity order of these benzofuranones was PCRBF2 > OXBF2 > PXBF2, an observation showing that the hydroxyl group in the 2′‐position does not weaken the antioxidant activity of benzofuranone, but, on the contrary, increases it. Analyses by FTIR revealed intramolecular hydrogen bonding between the 3‐position hydrogen and the oxygen of the 2′‐hydroxyl group, which makes the 2′‐hydroxyl hydrogen of PCRBF2 more reactive than the 3‐position reactive hydrogen. Thus the hydroxyl group reacts with radicals first. J. VINYL ADDIT. TECHNOL., 19:198‐202, 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
The oxidation of alcohols to aldehydes and ketones has been described using silica‐supported vanadium(IV ) oxide (V/SiO2, 1 ) in the presence of tert‐butyl hydroperoxide in tert‐butyl alcohol at ambient temperature with quantitative yields. The procedure is simple, efficient and environmentally benign.  相似文献   

7.
A macromolecular hindered phenol antioxidant, polyhydroxylated polybutadiene containing thioether binding 2,2′‐thiobis(4‐methyl‐6‐tert‐butylphenol) (PHPBT‐b‐TPH), was synthesized via a two‐step nucleophilic addition reaction using isophorone diisocyanate (IPDI) as linkage. First, the ? OH groups of PHPBT reacted with secondary ? NCO groups of IPDI to form the adduct PHPBT‐NCO, then the PHPBT‐b‐TPH was obtained by one phenolic ? OH of 2,2′‐thiobis(4‐methyl‐6‐tert‐butylphenol) (TPH) reacting with the PHPBT‐NCO. The PHPBT‐b‐TPH was characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (1H‐NMR), 13C‐NMR, and thermogravimetric analysis, and its antioxidant activity in natural rubber was studied by an accelerated aging test. Influences of reaction conditions on the two nucleophilic reactions between ? OH group and ? NCO group were investigated. In addition, catalytic mechanism for the reaction between PHPBT‐NCO and TPH was discussed. The results showed that the adduct PHPBT‐NCO could be obtained by using dibutyltin dilaurate (DBTDL) as catalyst, and the suitable temperature and DBTDL amount were 35°C and 3 wt %, respectively. However, triethylamine (TEA) was more efficient than DBTDL to catalyze the reaction between PHPBT‐NCO and TPH because of steric hindrance effect. In addition, it was found that the thermal stability and antioxidant activity of PHPBT‐b‐TPH were higher than those of the low molecular weight antioxidant TPH. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40942.  相似文献   

8.
Six organo‐phosphorus compounds were synthesized and incorporated in NR and SBR mixes. The rheometric characteristics of the green rubber mixes were determined using the oscillating disc rheometer. The prepared compounds were evaluated as antioxidants and antifatigue agents in NR and SBR vulcanizates. It was found that the prepared compounds are good antioxidant and antifatigue agents and their efficiency was better than that obtained by 4‐methyl‐2,6‐di‐tert‐butyl phenol, which is used in the rubber industry. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2984–2992, 2002; DOI 10.1002/app.2327  相似文献   

9.
Silica as a reinforcement filler for automotive tires is used to reduce the friction between precured treads and roads. This results in lower fuel consumption and reduced emissions of pollutant gases. In this work, the existing physical interactions between the filler and elastomer were analyzed through the extraction of the sol phase of styrene–butadiene rubber (SBR)–butadiene rubber (BR)/SiO2 composites. The extraction of the sol phase from samples filled with carbon black was also studied. The activation energy (Ea) was calculated from differential thermogravimetry curves obtained during pyrolysis analysis. For the SBR–BR blend, Ea was 315 kJ/mol. The values obtained for the composites containing 20 and 30 parts of silica per hundred parts of rubber were 231 and 197 kJ/mol, respectively. These results indicated an increasing filler–filler interaction, instead of filler–polymer interactions, with respect to the more charged composite. A microscopic analysis with energy‐dispersive spectroscopy showed silica agglomerates and matched the decreasing Ea values for the SBR–BR/30SiO2 composite well. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2273–2279, 2005  相似文献   

10.
At this research the grease (S0) containing [base lube oil grade 260/290, transformer oil, microcrystalline wax, Polyoxyethylene sorbiton‐mono‐palmitate antioxidant 2,2″methylenebis(4‐methyl‐6‐tertiary‐butyl phenol) anticorrosion] was prepared. To improve its physicochemical & dielectric properties (dielectric constant, dielectric loss, and volume resistivity) and giving it a good electrical insulator property, we add to the wax gel a nonpolar polymer as polyethylene, atactic polypropylene, unplastesized polyvinyl chloride, and plasticized polyvinyl chloride include triisopropyle vinyl phosphate in certain concentration. We conclude that the best insulation properties was achevied by adding atactic polypropyle. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Carbon nanotubes‐silica (CNTs‐SiO2) nanohybrid filler was fabricated by coating inorganic silica on multi‐wall CNTs through a sol–gel process. The CNTs‐SiO2 nanohybrids were then functionalized by 3‐methacryloxypropyltrimethoxysilane (3‐MPTS) followed by compounding to solution styrene butadiene rubber (S‐SBR) through mechanical mixing. The Fourier‐transform infrared spectroscopy showed that the CNTs were coated by inorganic SiO2, and grafted with 3‐MPTS successfully. The functionalized CNTs‐SiO2 nanohybrids had a rough surface as revealed by transmission electron microscope images. After hybridization and grafting, the functionalized CNTs‐SiO2 nanohybrids still maintained the crystal structure of CNTs, which was determined by X‐ray diffraction and Raman spectrum. The addition of nanohybrids accelerated the vulcanization process and improved the crosslinking degree of vulcanizates. With adding 10 phr (parts per hundred of rubber) functionalized CNTs‐SiO2, the mechanical properties of S‐SBR vulcanizates were improved significantly. The tensile moduli at 100% elongation (M100) and tensile strength had 54% and 28% increase, respectively. The incorporation of functionalized CNTs‐SiO2 nanohybrids also largely enhanced the storage modulus, and slightly increased the thermal conductivity of vulcanizates. POLYM. COMPOS., 00:000–000, 2013. © 2013 Society of Plastics Engineers POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Magadiite (MGD), a synthetic layered silicate (Na2Si14O29·9H2O) with surface chemistry similar to precipitated silica, was cation‐exchanged with three different organic cations to explore the effect of varying MGD layer spacing on the mechanical properties of MGD‐based styrene‐butadiene rubber (SBR) composites. This work also compares the mechanical properties of MGD/SBR composites with those formulated with montmorillonite (MMT) and precipitated silica. Dodecylpyridinium (DP+) produces greater expansion of MGD layers than cetyltrimethylammonium (CTA+); the resulting DP‐MGD/SBR composites have greater yield strain, toughness, and rubbery storage modulus than comparable CTA‐MGD/SBR composites. MGD treated with hexadecylammonium (HDA+) has the greatest layer spacing, but the HDA‐MGD layers collapse upon melt‐blending with SBR. CTA‐treated MMT (CMMT) exfoliates in aqueous suspension, but the platelets re‐stack upon drying and during melt‐blending with SBR. The presence of exfoliated and/or disordered platelet stacks in CMMT/SBR probably accounts for its higher tensile and dynamic moduli compared to MGD‐ and silica‐based SBR composites. Dynamic mechanical properties are used to predict tire tread performance metrics for these composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44764.  相似文献   

13.
Nanosilica was successfully grafted with antioxidant intermediate p‐aminodiphenylamine (RT) via silane coupling agent 3‐glycidoxypropyltrimethoxysilane (KH‐560), and the structures of product RT‐silica were confirmed by Fourier transform infrared spectra (FTIR) and other methods. RT‐silica exhibited excellent performance in many aspects. Scanning electron microscopy (SEM) observation shows that the RT‐silica has a better dispersion state and compatibility with the SBR matrix. The tests of oxidation induction time (OIT) have revealed that RT‐silica possesses better antioxidative and antimigratory efficiency than that of the corresponding low molecular counterpart. Degradation activation energy (Eα) of SBR composites were evaluated by the Kissinger–Akahira–Sunose (KAS) method and the results showed that SBR composites with RT‐silica have better thermal stability properties. POLYM. COMPOS., 34:1856–1862, 2013. © 2013 Society of Plastics Engineers  相似文献   

14.
Two miktoarm star‐shaped rubbers with large‐volume functional groups of 1,1‐diphenylhexyl at the ends of arms (DMS–PB–SBR) and one miktoarm star‐shaped rubber with n‐butyl groups at the ends of arms (BMS–PB–SBR) were prepared by 1,1‐diphenylhexyllithium (DPHLi) and n‐butyl lithium as initiators, respectively. The molecular structures and morphological properties of the three rubbers (MS–PB–SBR) were studied and compared with those acquired from the blend consisting of star‐shaped solution‐polymerized butadiene styrene rubber (S‐SSBR) and butadiene rubber (PBR) prepared by ourselves. The results showed that MS–PB–SBR exhibited a more uniform distribution of PBR phase and a smaller phase size of PBR than that of S‐SSBR/PBR blend. It is found that MS–PB–SBR composites filled with CB showed the lower Payne effect than that of S‐SSBR/PBR/CB composite, suggesting that the MS–PB–SBR/CB composite (particularly the DMS–PB–SBR/CB composites) would possess excellent mechanical properties, high wet‐skid resistance, and low rolling resistance. For the studied MS–PB–SBR systems, the contribution of large‐volume functional groups at the end of PBR molecular chains to decrease the rolling resistance was larger than that of Sn coupling effect. It is envisioned that the miktoarm star‐shaped rubbers with 1,1‐diphenylhexyl groups at the molecular ends would be useful for making treads of green tires. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40002.  相似文献   

15.
The preparation of the high cis ?1,4‐polyisoprene by Ziegler‐Natta catalysis system was studied. The effect of Al‐Ti catalysts modified by ethers with different structures which are different electron donor reagent on polymerization of isoprene has been mainly investigated. By the measurement method of the monomer conversion, FTIR, and 1H NMR spectroscopy, the influence of, respectively, added diphenyl ether, anisole, dibutyl ether, or methyl tert ‐butyl methyl ether as a third active component on the heterogeneous TiCl4‐Al(i ‐Bu)3‐ether catalyst activity and microstructure of synthetic polyisoprene was analyzed. By the adding of diphenyl ether or dibutyl ether, the process of prefabricated heterogeneous catalyst is quickly and catalyst particle quantity is large. The polymerization conversion is high and the microstructure cis ?1,4 content of the resulting polymer can reach 92%. But Al(i ‐Bu)3 added anisole or methyl tert ‐butyl methyl ether hard to cooperate with TiCl4. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 44357.  相似文献   

16.
The effect of the chemical modification of the silica surface by the silane coupling agent (Si69) on both the real and the imaginary parts of the shear compliance (J′, J″) on silica‐filled butyl rubber vulcanizates was investigated in a wide temperature and frequency range, ?70 to 120 °C and 10?4 to 10 Hz, respectively. In addition, the stress‐strain measurements, DSC, and TEM were carried out. Moreover the effect of stress‐strain cyclic deformation up to ten times with maximum deformation 80% of the elongation at break on J′, J″ is also studied. It was found that the filler network recovers after cyclic stress‐strain in a time scale of one year at room temperature.

Transmission electron photographs of the butyl rubber [IIR] vulcanizates: (a) IIR, unfilled, (b) IIR, filled with 20 phr SiO2, (c) IIR,filled with 20 phr SiO2 + 1.6 phr Si69.  相似文献   


17.
Natural rubber–silica [W(NR–SiO2)] composites were prepared by wet‐compounding technology with liquid natural rubber (LNR) as a compatibilizer. The effects of the LNR content and wet‐compounding technology on the filler dispersion, Payne effect, curing characteristics, mechanical properties, and interfacial interactions were investigated. The results show that the incorporation of LNR promoted vulcanization and decreased the Payne effect of the W(NR–SiO2) composites. With the addition of 5 phr LNR, the remarkable improvements in the mechanical properties of the W(NR–SiO2) vulcanizates were correlated with the improved silica dispersion and strengthened interfacial bonding. Furthermore, the W(NR–SiO2) vulcanizates containing LNR exhibited improvements in both the wet‐skid resistance and rolling‐resistance performance. The interfacial interactions, quantitatively evaluated by the Mooney–Rivlin equation and Lorenz–Park equation on the basis of the rubber elasticity and reinforcement theory, were strengthened in the presence of LNR. Accordingly, an interfacial structural model was proposed to illustrate the improvements in the mechanical properties of the W(NR–SiO2) composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46457.  相似文献   

18.
Chromium complexes with N,N,N‐tridentate ligands, LCrCl3 (L = 2,6‐bis{(4S)‐(?)‐isopropyl‐2‐oxazolin‐2‐yl}pyridine ( 1 ), 2,2′:6′,2″‐terpyridine ( 2 ), and 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine ( 3 )), were prepared. The structures of 1 and 2 were determined by X‐ray crystallography. Upon activation with modified methylaluminoxane (MMAO), 1 catalyzed the polymerization of 1,3‐butadiene, while 2 and 3 was inactive. The obtained poly(1,3‐butadiene) obtained with 1 ‐MMAO was found to have completely trans‐1,4 structure. The 1 ‐MMAO system also showed catalytic activity for the polymerization of isoprene to give polyisoprene with trans‐1,4 (68%) and cis‐1,4 (32%) structure. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
The multiwalled carbon nanotubes (MWCNT) filled styrene–butadiene rubber (SBR) composites were prepared by incorporating MWCNT in a SBR/toluene solution and subsequently evaporating the solvent. These composites have shown a significant improvement in Young's modulus and tensile strength with respect to SBR gum without sacrificing high elongation at break. However, this improvement is less than expected at the higher filler content. Then, the influence of low concentrations of MWCNT on the vulcanization process of the SBR composites was studied by means of rheometer torque curves, swelling measurements, differential scanning calorimeter (DSC) analysis, and Fourier transform infrared (FTIR) spectroscopy. Also, their thermal degradation was studied by thermogravimetric analysis (TGA). It has been noticed that MWCNT affects the cure kinetics of SBR gum matrix reducing all parameters, i.e., the total heat rate and order of the reaction, scorch delay, maximum torque, and crosslink density. This effect increases as MWCNT content does, and it was attributed to the adsorption of the accelerator employed in the vulcanization (N‐tert‐butyl‐benzothiazole‐2‐sulfenamide) onto the MWCNT surface. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The cure index and apparent activation energy of vulcanization of one grade of natural rubber (SMR L) and two grades of epoxidized natural rubbers (ENR 25 and ENR 50) were studied in the presence of three types of antioxidants [viz., 2,2′methylene‐bis(4‐methyl‐6‐tertbutylphenol) (AO 2246), poly‐2,2,4‐trimethyl‐1,2‐dihydroquinoline (TMQ), and N‐isopropyl‐N′‐phenyl‐p‐phenylenediamine (IPPD)] in the temperature range of 120–180°C by using a Monsanto automatic Mooney viscometer. Accelerated sulfur vulcanization system and up to 5 phr of antioxidant concentration was used throughout the investigation. Results indicate that both cure index and apparent activation energy of vulcanization are dependent on the type and concentration of the antioxidant used. AO 2246 (a phenol‐based antioxidant) would retard vulcanization as reflected by the higher cure index and activation energy, an observation which is attributed to the solvation and steric hindrance effects of the antioxidant. On the contrary, both TMQ and IPPD (amine‐based antioxidants) exhibit reverse behavior due to the catalytic effect of the antioxidants in generating more active sulfurating agents for vulcanization. In all cases, SMR L gives higher cure index and apparent activation energy than the corresponding ENR, a phenomenon which is associated with the activation of the adjacent double bond by epoxide group in the latter. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3234–3238, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号