首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degraded gelatin (Gel) and oxidized corn starch (OCS) as renewable and abundant recyclable and biodegradable materials can be applied to dust mitigation, which has been investigated in this research. Blends of oxidized corn starch and gelatin (OCS‐Gel) were prepared by introducing the OCS into the Gel. Sodium carboxymethyl cellulose was used as a thickener and dispersant in the blends. The OCS‐Gel blends were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis (TGA). The results revealed that the blends have a uniform porous structure and can form stable Schiff's base structures. The TGA and DTGA thermograms indicated high thermal stability up to 325 °C. Moreover, the blend had good stability and compatibility by mixing with an electrolyte solution, and the biodegradability and water‐sorption measurements also revealed that the OCS‐Gel had excellent hygroscopicity and degradability. The results of contact angle measurements between OCS‐Gel solutions and dust showed that the blends have a satisfactory effect on dust wetting, and the results of light‐transmittance tests revealed that the blends had a good effect on dust‐removal ability. In addition, the dust particles can be evenly adsorbed on the surface of OCS‐Gel when they were evenly dispersed on the surface of the OCS‐Gel solution and can then form a film. The simulation experiment for flying dust in an enclosed area indoors indicated that the dust‐suppression degree for particulate matter less than 2.5 micrometers (PM2.5) and less than 10 micrometers (PM10) in size can reach 68.2% and 78.7%, respectively. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44437.  相似文献   

2.
To fully explore the influences of saturated fatty acids (SFAs) on the properties of sweet‐potato‐starch (SPS)‐based films, five SFAs were chosen to add to SPS. The SPS‐based films were prepared by casting. The microstructure, mechanical, optical, water vapor barrier, and thermal properties of the films were investigated. The 2.0% (w/w, on the basis of starch) SFA significantly changed the SPS pasting characteristics in the peak viscosity, breakdown, and other feature point viscosity values as determined by a Rapid Visco Analyser. The amylose molecular weights decreased as measured by high‐performance size exclusion chromatography. A thermal study with differential scanning calorimetry suggested that the addition of SFA increased the onset temperature and peak temperature. Scanning electronic microscope (SEM) images showed a continuous and uniform structure in the films with SFA. The SPS–SFA composite films showed lower light transmission and elongation at break than the control. Compared with the control films, the addition of SFA increased the tensile strength and decreased the water vapor permeability of the films. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41380.  相似文献   

3.
The surface‐modified β‐Si3N4 whiskers were used as inorganic fillers to reinforce dental resin (Bis‐GMA/TEGDMA) matrix with filler level ranging from 0 to 60 wt %. The experimental results indicated that the fracture strength of the composites increased from 79.85 to 139.8 MPa with increasing the whiskers loading. The compressive strength, elastic modulus, and rockwell hardness all increased monotonously with increasing filler level. Furthermore, thermal cycling did not decrease the fracture strength of the composites. Moreover, the composites showed good biocompatibility to support MG63 cells adhesion and proliferation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40692.  相似文献   

4.
Thermal processing of two potato protein isolates (PPIs) with glycerol as a plasticizer was explored in this study. The PPIs were pretreated by alkali or alkali under reducing conditions. The PPIs before and after pretreatment were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The effects of plasticizer content and pretreatment on mechanical and thermo‐mechanical properties of the compression‐molded biopolymers were studied. The highest tensile strengths obtained were 20–25 MPa and the biopolymer can be brittle or ductile depending on the plasticizer contents. The molecular weight and protein structure of the PPIs markedly affected the resultant biopolymers’ static and dynamic mechanical properties. The pretreatment of PPIs caused distinctly different changes in the mechanical properties of the two PPIs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42723.  相似文献   

5.
The durability of polylactide (PLA) blended with polycarbonate (PC) was assessed by exposure to conditions of elevated temperature and humidity over a period of several weeks. Mechanical performance, moisture absorption, chemical composition, and thermal properties were monitored as a function of continuous conditioning at 70°C and 90% relative humidity (RH). All PLA and PC/PLA blends showed significant moisture absorption and hydrolysis, resulting in degradation of properties. Furthermore, while the addition of PC was intended to improve the durability of the blend over neat PLA, it was found that the hydrolysis products of PLA accelerated the degradation of PC itself. This study shows for the first time the hydrolysis behavior of PC/PLA blends in an increasingly acid environment during heat and humidity conditioning. These injection‐molding grades of PLA‐based resins are currently not suitable for use in applications that require long‐term durability in environments subject to elevated temperature and humidity, such as automotive interiors. Further material formulation work is required before use in injection‐molded applications for automotive. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
The effect of freeze‐thaw pretreatment on the thermal drying process and physicochemical properties of chitosan was investigated in this study. Results showed that the freeze‐thaw treatment changed the form of chitosan paste and reduced 75.6–77.7% of the water content. The freeze‐thaw treatment decreased the drying time of chitosan from 16–19 h to 2.75–4 h and the dried product was loosely packed powder. After freeze‐thaw treatment, the molecular weight of chitosan was unchanged during the thermal drying. The heat‐induced browning effect of chitosan during drying was greatly alleviated by the pretreatment. Furthermore, the pretreatment increased the 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical‐scavenging activity of dried product by 40.4–59.8%. The molecular weight, color, and DPPH radical‐scavenging activity of the pretreated dried chitosan product were close to those of freeze‐dried product. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41017.  相似文献   

7.
An acrylate‐modified tung‐oil waterborne insulation varnish was synthesized from tung oil, maleic anhydride, and acrylates via a Diels–Alder reaction and free‐radical polymerization, and the varnish could be solidified at a relatively low temperature with blocked hexamethylene diisocyanate as a curing agent. The resulting films were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The insulation properties (electrical insulation strength, volume resistivity, and surface resistivity) of the varnish films were tested, and the resistances of films to salted water were evaluated. With an increase in the maleic anhydride content, the thermal stability of the film was improved, whereas the electrical insulation strength, volume resistivity, and surface resistivity decreased. The electrical insulation strength of the film after it was immersed in the NaCl solution was lower than that in dry state, and it decreased as the immersed time was prolonged. In particular, the electrical insulation strength loss of the film increased significantly at maleic anhydride contents beyond 25 wt %. Furthermore, the hardness of the film increased with increasing methyl methacrylate/N‐butyl acrylate ratio, whereas the flexibility and adhesion of film decreased to a certain degree at the same time. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41608.  相似文献   

8.
To prepare alkoxysilane‐functionalized urethane oil (AFUO) using linseed oil, 3‐aminopropyltriethoxysilane (APTES) was first reacted with diisocyanate to obtain an NCO‐terminating oligomer. The reaction was continued by adding linseed oil glyceride to form an AFUO prepolymer. The auto‐oxidative drying coating was obtained after adding a metal dryer to the AFUO prepolymer. Urethane oil (UO) coating, as a control, was obtained by the same procedure as that for AFUO, but without containing alkoxysilane‐functional groups in the formation. Siloxane hybrid urethane oil (SHUO) wood coatings were prepared by mixing tetraethyl orthosilicate (TEOS) solutions, as an external crosslinking agent by sol–gel process, with the AFUO and UO coatings. We found that introducing of APTES into the molecular chains of the UO coating resulted in a film with superior impact and abrasion resistance, and it is the most efficient process to enhance the UO films. The addition of TEOS into AFUO coatings shortened the curing time and further improved the crosslinking density of the AFUO films; however, the physical properties like impact resistance, bending resistance, and gloss were even worse than AFUO films. Mixing of TEOS and UO coating also shorten the curing time and improved the heat resistance, lightfastness, and hardness of the UO coating. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44562.  相似文献   

9.
A novel hydroxyl‐terminated bio‐based engineering elastomer (BEE) was synthesized from four bio‐based monomers by adding excess diol. Then the BEE was chain extended in Haake torque rheometer with 4,4‐diphenyl methane diisocyanate (MDI) as chain extender. The molar ratio of NCO/OH, reaction temperature and reaction time of the chain‐extension reaction were studied, and the optimum condition was determined by the gel permeation chromatography (GPC), soxhlet extraction, and fourier transform infrared spectroscopy (FTIR) results. After chain extension, (i) the number‐average molecular weight of BEE became about 3.5 times of the original BEE, (ii) the thermal stability was improved and the crystallization rate was lower, (iii) and the mechanical properties were significantly improved with nano‐SiO2 as reinforcing filler. The chain‐extended BEE would have potential wide applications in engineering field. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40756.  相似文献   

10.
This work studies the effect of processing parameters on mechanical properties and material distribution of co‐injected polymer blends within a complex mold shape. A partially bio‐sourced blend of poly(butylene terephthalate) and poly(trimethylene terephthalate) PTT/PBT was used for the core, with a tough biodegradable blend of poly (butylene succinate) and poly (butylene adipate‐co‐terephthalate) PBS/PBAT for the skin. A ½ factorial design of experiments is used to identify significant processing parameters from skin and core melt temperatures, injection speed and pressure, and mold temperature. Interactions between the processing effects are considered, and the resulting statistical data produced accurate linear models indicating that the co‐injection of the two blends can be controlled. Impact strength of the normally brittle PTT/PBT blend is shown to increase significantly with co‐injection and variations in core to skin volume ratios to have a determining role in the overall impact strength. Scanning electron microscope images were taken of co‐injected tensile samples with the PBS/PBAT skin dissolved displaying variations of mechanical interlocking occurring between the two blends. © 2014 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41278.  相似文献   

11.
Polylactic acid (PLA) biocomposites were produced by a combination of extrusion and injection molding with three cellulosic reinforcements (agave, coir, and pine) and contents (10, 20, and 30%). In particular, some samples were subjected to thermal annealing (105 °C for 1 h) to modify the crystallinity of the materials. In all cases, morphological (scanning electron microscopy) and thermal (differential scanning calorimetry, dynamical mechanical thermal analysis) characterizations were related to the mechanical properties (Charpy impact, tensile and flexural tests). The results showed that annealing increased the crystallinity for all the materials produced, but different mechanical behaviors were observed depending on fiber type and content. For example, annealing increased the impact strength and flexural modulus of PLA and PLA biocomposites (agave, coir, and pine), while decreasing their flexural strength. But the main conclusion is that fiber addition combined with thermal annealing can substantially increase the thermal stability of the studied materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43750.  相似文献   

12.
This study examines the isothermal treatment of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) powders and films. The PHB and PHBV crystallinities were determined using X‐ray diffractometry, and shown to increase with temperature (130–150°C) and then decreased from 55% to 45% at 180°C. The crystal morphology of crystal planes (101) and (111) became sharp at a high temperature. The weight average molecular weight (Mw) of PHB decreased from 1,028,000 to 41,800 g/mol when heated at 180°C for 30 min. The molecular weight of PHB decreased more rapidly than that of PHBV with time. No peak signal was observed in gel permeation chromatography after heating at 150°C because the solubility of PHB changed with crystallinity. The thermal behaviors of PHB and PHBV were analyzed by differential scanning calorimetry and thermogravimetric analysis. The roughness, contact angle, and surface morphology of PHB and PHBV films were also measured to determine the surface properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3659–3667, 2013  相似文献   

13.
Sophorolipids (SL; microbial glycolipids) were used as additives in solvent‐cast short‐chain polyhydroxyalkanoate (sc‐PHA) films to enhance surface roughness and porosity. Poly‐3‐hydroxybutyrate (PHB), poly‐(6%)‐3‐hydroxybutyrate‐co‐(94%)‐3‐hydroxyvalerate (PHB/V), and poly‐(90%)‐3‐hydroxybutyrate‐co‐(10%)‐3‐hydroxyhexanoate (PHB/HHx) films were evaluated with up to 43 wt % of SL. Sophorolipid addition caused surface dimples with maximum diameters of 131.8 µm (PHB), 25.2 µm (PHB/V), and 102.8 µm (PHB/HHx). A rise in the size and number of pores in the polymer matrix also occurred in PHB and PHB/V films. Surface roughness and film porosity were visualized by scanning electron microscopy and quantitated using confocal microscopy by correlating the surface area (A′) to the scanned area (A) of the films. The phenotypic alterations of the films caused a gradual decline in tensile strength and modulus and increased the elongation to break. Reductions in the enthalpies of fusion (ΔHf) in both the PHB (41% reduction) and PHB/HHx (36% reduction) films implied diminished crystallinity as SL concentrations increased. Over the same SL concentrations the Tan δ maxima shifted from 4 to 30°C and from 2 to 20°C in these respective films. These results provide a novel means by which sc‐PHA properties can be controlled for new/improved applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40609.  相似文献   

14.
Plasma polymerized γ‐terpinene (pp?GT) thin films are fabricated using RF plasma polymerization. MIM structures are fabricated and using the capacitive structures dielectric properties of the material is studied. The dielectric constant values are found to be in good agreement with those determined from ellipsometric data. At a frequency of 100 kHz, the dielectric constant varies with RF deposition power, from 3.69 (10 W) to 3.24 (75 W). The current density–voltage (J?V) characteristics of pp–GT thin films are investigated as a function of RF deposition power at room temperature to determine the resistivity and DC conduction mechanism of the films. At higher applied voltage region, Schottky conduction is the dominant DC conduction mechanism. The capacitance and the loss tangent are found to be frequency dependent. The conductivity of the pp?GT thin films is found to decrease from 1.39 × 10?12 S/cm (10 W) to 1.02 × 10?13 S/cm (75 W) and attributed to the change in the chemical composition and structure of the polymer. The breakdown field for pp–GT thin films increases from 1.48 MV/cm (10 W) to 2 MV/cm (75 W). A single broad relaxation peak is observed indicating the contribution of multiple relaxations to the dielectric response for temperature dependent J?V. The distribution of these relaxation times is determined through regularization methods. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42318.  相似文献   

15.
We report the synthesis of a linear bio‐based polyurethane (bio‐PU) containing furan ring by using renewable polylactide copolymer diol and 2,5‐furandimethanol as a soft segment and chain extender, respectively, in which the reversible crosslinked covalent bonds between hard segments were incorporated via Diels–Alder (D‐A) reaction between the furan ring of the chain extender and bismaleimide (BM) crosslinker. By simply controlling the amount of BM, mechanical properties of the obtained crosslinked bio‐PUs (CBPUs) were varied widely. In particular, the CBPU100 sample shows the highest tensile strength of 10.8 MPa, Young's modulus of 193 MPa, and an elongation of 155%. The differential scanning calorimetry experiments verify the recycle property of the CBPUs by the D‐A/retro‐D‐A reaction at the proper temperature. The thermal recyclability and remolding ability of these materials are demonstrated by two kinds of polymer processing methods, i.e., solution casting and hot‐compression molding. The recycled CBPUs display almost identical elongation and slightly decreased tensile strength compared to the as‐synthesized samples. Furthermore, the CBPUs also exhibit excellent self‐healing ability. Therefore, the resulting CBPUs possess tunable mechanical properties, good thermal recyclability, re‐mending, and self‐healing ability, which makes the bio‐based materials more eco‐friendly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46272.  相似文献   

16.
In this study, (1.1111 ? x)(0.9CS–0.1NaTf)? xAl2O3(0.02 ≤ x ≤ 0.1) [where CS is chitosan, NaTf is sodium triflate (NaCF3SO3), and Al2O3 is aluminum oxide] nanocomposite solid polymer electrolyte (SPE) films based on CS were prepared by a solution casting technique. X‐ray diffraction and scanning electron microscopy analysis revealed that the alumina nanoparticles had a great effect on the structural and morphological behavior of the CS–NaTf (90:10) polymer electrolyte. An investigation of the electrical and dielectric parameters of the nanocomposite SPE films was conducted. Electrical impedance spectroscopy was carried out for this purpose. The relationships between the electrical and dielectric parameters were used to interpret and understand the ion‐conduction mechanism. We observed that the direct‐current conductivity (σdc) and dielectric constant followed the same trend with salt concentration. σdc versus temperature showed the Arrhenius and Vogel‐Fulcher‐Tammann (VTF) regions. The drops of σdc at high temperatures were observed for all of the samples. The ion relaxation dynamics were studied from Argand plots. For the first time, we confirmed the existence of a strong experimental relationship between the high‐frequency semicircle of the impedance plots and the high‐frequency dispersion regions of the alternating‐current conductivity (σac). The dispersion regions of σac were used to study the ion‐conduction mechanism. The behavior of the frequency exponent as a function of the temperature was used to interpret σdc versus the temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41774.  相似文献   

17.
Kinetic studies of the esterification of glycerol (G) and sebacic acid (SA) at three molar ratios (0.6, 0.8, 1.0) and at three temperatures (120, 130, 140°C) to form poly(glycerol–sebacate) were performed and assessed using FT‐Raman spectroscopy. The quantitative changes in the concentrations of carboxylic acid and ester groups within the forming bioelastomer were measured and the chemical rate constants (k) determined from the kinetic scheme were first‐order, with respect to sebacic acid concentration. Increasing the reaction temperature by 20°C is noted to increase the chemical rate constant (k) by a factor of up to 4.5 and the total extent of conversion at early times for the molar ratios investigated. The activation energy (Ea) and the pre‐exponential factor (A0) for these three stoichiometric ratios were calculated, which varied in accordance with the average functionality of the system. Under isothermal conditions, the chemical rate constant remained unchanged with an increase in the extent of the reaction (α) until a spontaneous transition resulted in the shift in the mechanism from kinetics to diffusion controlled. The Young's moduli of the PGS polymers were found to depend primarily on the average functionality of the system and the curing period. This investigation confirms the reaction mechanism for PGS polymer synthesis and shows the flexibility afforded to PGS properties and reaction times through varying the stoichiometric ratios of glycerol to sebacic acid. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Poly(lactic acid) (PLA) is a biobased polymer made from biomass having high mechanical properties for engineering materials applications. However, PLA has certain limited properties such as its brittleness and low heat distortion temperature. Thus, the aim of this study is to improve toughness of PLA by blending with poly(butylene succinate‐co‐adipate) (PBSA), the biodegradable polymer having high toughness. Polymer blends of PLA and PBSA were prepared using a twin screw extruder. The melt rheology and the thermal property of the blends were examined. Further the blends were fabricated into compression molded parts and melt‐spun fiber and were subjected to tensile and impact tests. When the PBSA content was low, PBSA phase was finely dispersed in the PLA matrix. On the other hand, when the PBSA content was high, this minor phase dispersed as a large droplet. Mechanical properties of the compression molded parts were affected by the dispersion state of PBSA minor component in PLA matrix. Impact strength of the compression molded parts was also improved by the addition of soft PBSA. The improvement was pronounced when the PBSA phase was finely dispersed in PLA matrix. However, the mechanical property of the blend fibers was affected by the postdrawing condition as well as the PBSA content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41856.  相似文献   

19.
Collagen, a prominent biopolymer, which is famous for its excellent biological activity, has been used extensively for tissue engineering applications. In this study, a novel solvent system for collagen was developed with an ionic liquid, 1‐ethyl‐3‐methylimidazolium acetate ([EMIM][Ac]), solvent system. A series of sodium salts were introduced into this solvent system to enhance collagen's dissolution procedure. The results show that the solubility of collagen was significantly influenced by the temperature and sodium salts. The solubility reached up to approximately 11% in the [EMIM][Ac]/Na2HPO4 system at 45°C. However, the structure of the regenerated collagen (Col‐regenerated) may have been damaged. Hence, we focused on the structural integrity of the collagen regenerated from the [EMIM][Ac] solvent system by the methods of sodium dodecyl sulfate–polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy, ultrasensitive differential scanning calorimetry, atomic force microscopy, X‐ray diffraction, and circular dichroism because its signature biological and physicochemical properties were based on its structural integrity. Meanwhile, a possible dissolution mechanism was proposed. The results show that the triple‐helical structure of collagen regenerated from the [EMIM][Ac] solvent system below 35°C was retained to a large extent. The biocompatibility of Col‐regenerated was first characterized with a fibroblast adhesion and proliferation model. It showed that the Col‐regenerated had almost the same good biological activity as nature collagen, and this indicated the potential application of [EMIM][Ac] in tissue engineering. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2245–2256, 2013  相似文献   

20.
Several bio‐renewable thermosetting polymers were successfully prepared from tung oil through cationic polymerization for the use as the healing agent in self‐healing microencapsulated applications. The tung oil triglyceride was blended with its methyl ester, which was produced by saponification followed by esterification. The changes in storage modulus, loss modulus, and glass transition temperature as functions of the methyl ester content were measured using dynamic mechanical analysis. In addition, the fraction of cross‐linked material in the polymer was calculated by Soxhlet extraction, while proton nuclear magnetic resonance, Fourier transform infrared spectroscopy and TEM were used to investigate the structure of the copolymer networks. The thermal stability of the thermosets as a function of their methyl ester blend contents was determined by thermogravimetric analysis. Finally, the adhesive properties of the thermosets were studied using compressive lap shear and the fracture surfaces were analyzed using SEM. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40406.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号