首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose diacetate (CA)/epoxy resin (EP) blends with excellent mechanical performance were prepared with simple blending followed by curing with isophorone diamine (IPDA). The reaction between the amino groups of IPDA and epoxide groups of EP was confirmed by Fourier transform infrared spectroscopy. Scanning electron microscopy revealed that the cured EP particles gradually became larger and closer to each other to form semi‐interpenetrating polymer networks in the CA matrix; this contributed to the improved mechanical properties of the CA/EP blends. Dynamic rheological experiments indicated that the CA/EP blends with semi‐interpenetrating polymer networks retained processability. After the introduction of a low content (5–10 phr) of IPDA, the mechanical properties of the CA/EP blends were significantly enhanced. With the addition of 20–30‐phr IPDA, the CA/EP blend exhibited a tensile strength of 77 MPa, a flex strength of 65 MPa, a flex modulus of 2.6 GPa, and a hardness of 94 HD; these values were much higher than those of the pristine CA/EP binary blend. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44151.  相似文献   

2.
The tough and stretchable crosslinked hydrogenated acrylonitrile–butadiene rubber (HNBR) could be prepared by resol type phenol resin as a crosslinker. The mechanical properties and the network structure of the phenol resin crosslinked HNBR were investigated by comparing with those of the peroxide crosslinked HNBR having the higher crosslink density and the heterogeneous network structure. The elastic modulus and the strain at break of the phenol resin crosslinked HNBR were much higher than those of the peroxide one. The residual strain was below 20 % after stretching up to 650 % and then releasing from the cramps. Since the crosslink density is low, the high elastic modulus and the good recovery deformation are attributed to the stiffness and rigidity of the crosslink junctions obtained by phenol resin. Small‐angle X‐ray scattering measurements revealed that the network structure is spatially homogeneous and the results of the wide angle X‐ray diffraction indicate that the strain‐induced crystallization is suppressed, which enable the longer elongation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
In this article, we experimentally investigate the structure–property relationships of an acrylonitrile butadiene styrene (ABS) copolymer for fatigue and use a microstructure‐based multistage fatigue (MSF) model to predict material failure. The MSF model comprises three stages of fatigue damage (crack incubation, small crack growth, and long crack growth) that was originally used for metal alloys. This study shows for the first time that the MSF theory is general enough to apply to polymer systems like ABS. The experimental study included monotonic testing (compression and tension) and fully reversed uniaxial cyclic tests at two frequencies (1 Hz and 10 Hz) with a range of strain amplitudes of 0.006 to 0.04. Cyclical softening was observed in the ABS copolymer. Fractography studies of failed specimens revealed that particles were responsible for crack incubation. Although polymeric materials can be argued to be more complex in terms of failure modes and thermo‐mechano‐chemical sensitivity when compared with most metal alloys, results showed that the MSF model could be extended successfully to capture microstructural effects to polymeric materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40882.  相似文献   

4.
Two different kinds of micro‐nanoconstrained damping structure units (M‐NCDSUs) were prepared by carboxyl‐terminated butadiene acrylonitrile copolymer and epoxy‐terminated butadiene acrylonitrile copolymer liquid rubbers intercalating organic montmorillonite, respectively. The prepared M‐NCDSUs were then blended with epoxy resin to obtain damping structure integration nanocomposites. The X‐ray diffraction and transmission electron microscope measurements applied for the obtained samples confirmed the good formation of M‐NCDSUs in the epoxy network. The tensile strength decreased slightly with the addition of M‐NCDSUs, whereas the damping properties measured by dynamic mechanical analysis showed a remarkable increase. Besides, the cured epoxy resin exhibited a two‐phase morphology where the spherical rubber phase dispersed uniformly in the epoxy matrix. The nanocomposites containing M‐NCDSUs showed superior comprehensive properties compared with that without the functional units. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39797.  相似文献   

5.
Nitrile rubber (NBR)/hydrogenated nitrile butadiene rubber (HNBR) blends with various ratios were compounded with internal mixer and two-roll open mill. Mechanical properties and low-temperature performance (TR10) of the NBR/HNBR blends after aging under different conditions were investigated. Furthermore, equilibrium swelling test and moving die rheometer (MDR) test were used to systematically investigate the effects of HNBR dosage on the crosslink densities and curing behaviors. Vulcanization torque and crosslink densities decreased with an increase in HNBR content. The crosslink density of pure HNBR is higher than that of pure NBR, which is related to the macromolecular structures of the rubber. Compression sets of the NBR/HNBR vulcanizates were correlated with HNBR dosage indicating a linear relationship. Low-temperature performance of the NBR/HNBR blends was improved after being aged in the synthetic hydrocarbon hydraulic oils (SH-1 and SH-2). This work shows that the low-temperature performance and oil resistance could be better balanced by blending NBR with HNBR, while the mechanical properties maintain relatively high level.  相似文献   

6.
3D printing has been extensively applied in human‐related activities, and therefore the 3D printed nanocomposites became more popular and important in end‐use products. In the present study, we use lignin‐coated cellulose nanocrystal (L‐CNC) to reinforce 3D printed acrylonitrile butadiene styrene (ABS) and explore the effect of L‐CNC on the structural, mechanical, and thermal properties of 3D printed L‐CNC/ABS nanocomposites. The results indicate that the addition of L‐CNC foams the ABS and decreases the density of 3D printed L‐CNC/ABS nanocomposites. However, the tensile modulus and storage modulus increase by adding 4% L‐CNC. The thermal stability of 3D printed L‐CNC/ABS nanocomposites is also significantly improved as indicated by an increase in the maximum degradation temperature. The morphology of the nanocomposites reveals good dispersion and interfacial adhesion between L‐CNC and ABS. The finding indicates that the 3D printed nanocomposites become lighter and stiffer with addition of L‐CNC, which will have great potential to be applied in end‐use products. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45082.  相似文献   

7.
Driven by the phenomenon of increasing irritations and allergic reactions of dental prosthesis carriers preferably due to residual methyl methacrylate monomer in conventional dental materials, autopolymerizing hypoallergenic denture base polymers were prepared as two‐component materials in the shape of paste/paste‐ or powder/liquid systems. The processing behavior of these materials was investigated regarding the processing and solidification times also in dependence on the polymerization catalyst concentration, whereas the whole processing and curing characteristics and the final polymer properties were evaluated by dynamic mechanical analysis in shear mode in the temperature range from ?145°C to 200°C. The mechanical properties of the hypoallergenic denture base polymers were validated regarding stiffness (flexural modulus E') and fracture toughness (maximum factor of loading intensity , total work of fracture ) and the effects of monomer composition, kind of resin powder, impact modification by the liquid component, and water immersion on these properties were investigated. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41378.  相似文献   

8.
An epoxy based on the tetraglycidyl 4,4′‐diaminodiphenyl‐ methane (TGDDM)/bisphenol A type novolac(F‐51) cured with 4,4′‐diaminidiphenysulfone (DDS) has been modified with Poly (phthalazinone ether nitrile ketone)(PPENK). The interaction between the PPENK and epoxy resin have been investigated by differential scanning calorimetry (DSC), FT‐IR, and dynamic mechanical analysis (DMA). The thermal and mechanical properties were characterized by thermogravimetric analysis (TGA), thermomechanical analysis (TMA), flexural, impact strength, and the critical stress intensity factor tests. The results showed that a large number of physical crosslinks formed by intermolecular and intramolecular hydrogen bonding indeed existed in the TGDDM/F‐51/PPENK blends. These interactions gave good compatibility between PPENK and epoxy resin. So that any phase separation had not been detected by DMA and scanning electron microscope (SEM). Beyond that the interaction could also be a benefit to the thermal and mechanical properties. Compared with the neat epoxy resin, the critical stress intensity factor values reached the maximum at 10‐phr PPENK, as well as the impact strength. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42938.  相似文献   

9.
Microstructure and mechanical properties of isotactic polypropylene (iPP) stretched at different temperatures were studied. Strain‐induced fibrils were observed after stretching. Crystallinity (Xc), crystallite thickness (Lc), long period (Lpf), and diameter (Df) of fibrils were characterized by Differential Scanning Calorimetry and Small angle X‐ray scattering. Lpf of stretched iPP below 60°C was found to be lower than undrawn iPP. Xc, Lc, and Df increased with increasing draw temperature. Tensile test showed that Young's moduli of stretched iPPs were negatively dependent on Xc and Lc. The fraction of taut tie molecules was estimated from the mechanical model. Results showed that more tie molecules were formed in the samples stretched at lower temperatures. Dynamical mechanical analysis showed that glass transition temperature was strongly dependent on the draw temperature. The glass transition peak disappeared in stretched iPPs obtained below 80°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42622.  相似文献   

10.
The aggregation structure of lignin in aqueous solution had an important effect on the dispersion of lignin and the properties of lignin/styrene–butadiene rubber (SBR) composites. This article revealed the relationship between aggregation structure and chemical structure of modified lignin. Unmodified lignin was amorphous; however, our results showed that aldehyde‐modified lignin was transformed into spherical aggregates, while propylene‐oxide‐modified lignin self‐aggregated into supramolecular domains. The relationships between aggregation structure, filler dispersion, filler–rubber interaction, and performance were also studied by investigating the microstructure, viscoelastic behavior, and mechanical properties of lignin/SBR composites. Meanwhile, a solution to improve the coprecipitation efficiency of lignin and SBR latex was proposed. In this article, epoxidized natural rubber (ENR) was also used as compatibilizer to improve the interfacial adhesion between polar lignin and nonpolar SBR. The results showed better lignin dispersion for the ENR‐containing rubber composites, as well as superior wet skid resistance and lower rolling resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45759.  相似文献   

11.
Thermomechanical, mechanical and fracture mechanical properties of modified epoxy resins with two different modifiers are investigated. Carboxyl‐terminated butadiene‐acrylonitrile (CTBN) is used as toughening agent and hexanediole diglycidyl ether (HDDGE) as reactive diluent. Both modifiers are admixed in contents from 0 up to 100 phr (parts per hundred resin) and exhibit flexibilizing and toughening qualities. The glass transition temperature is strongly depressed by the admixed reactive diluent, whereas the tensile modulus exhibits greater dependency on the toughening agent contents. The tensile strength and strain at break values are higher for the formulations with diluent compared to resins with toughening agent. Up to a content of 45 phr both modified systems exhibit comparable fracture toughness values. Only the toughened systems comprise increasing values for modifier amounts higher than 45 phr. For the formulation with both modifiers (toughening agent and diluent) a significantly higher toughness but a reduced glass transition temperature was obtained. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45348.  相似文献   

12.
The purpose of this study was to investigate the shape‐memory behavior of poly(para‐phenylene) (PPP) under varying programming temperatures, relaxation times, and recovery conditions. PPP is an inherently stiff and strong aromatic thermoplastic, not previously investigated for use as a shape‐memory material. Initial characterization of PPP focused on the storage and relaxation moduli for PPP at various frequencies and temperatures, which were used to develop continuous master curves for PPP using time–temperature superposition (TTS). Shape‐memory testing involved programming PPP samples to 50% tensile strain at temperatures ranging from 155°C to 205°C, with varying relaxation holds times before cooling and storage. Shape‐recovery behavior ranged from nearly complete deformation recovery to poor recovery, depending heavily on the thermal and temporal conditions during programming. Straining for extended relaxation times and elevated temperatures significantly decreased the recoverable deformation in PPP during shape‐memory recovery. However, PPP was shown to have nearly identical full recovery profiles when programmed with decreased and equivalent relaxation times, illustrating the application of TTS in programming of the shape‐memory effect in PPP. The decreased shape recovery at extended relaxation times was attributed to time‐dependent visco‐plastic effects in the polymer becoming significant at longer time‐scales associated with the melt/flow regime of the master curve. Under constrained‐recovery, recoverable deformation in PPP was observed to have an exponentially decreasing relationship to the bias stress. This study demonstrated the effective use of PPP as a shape‐memory polymer (SMP) both in mechanical behavior as well as in application. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42903.  相似文献   

13.
Nitrile rubber/silica composites are prepared by a sol–gel process using tetraethoxysilane as precursor in the presence of γ‐mercaptopropyltrimethoxysilane as a silane coupling agent. Here, we follow a novel processing route where the silica particles are generated inside the rubber matrix before compounding with vulcanizing ingredients. The effect of in situ generated silanized silica on the properties of the rubber composite has been evaluated by studying curing characteristics, morphology, mechanical and dynamic mechanical properties. Enhanced rubber–filler interaction of these composites is revealed from stress–strain studies and dynamic mechanical analysis. Excessive use of silane shows an adverse effect on mechanical properties of the composites. Due to finer dispersed state of the in situ silica and enhanced rubber–filler interaction, the mechanical properties and thermal stability of the composites are improved compared to corresponding ex situ processed composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40054.  相似文献   

14.
Lignin‐layered double hydroxide (lignin‐LDH) complex was synthesized by in situ method, and then styrene‐butadiene rubber (SBR)/lignin‐LDH composites were prepared by the melt compounding method. X‐ray diffraction analysis showed that crystal lignin‐LDH was successfully obtained and transmission electron microscopy analysis showed well dispersion of lignin‐LDH in SBR matrix. The tensile strength, elongation at break, 300% modulus and hardness of lignin‐LDH/SBR were significantly improved compared to LDH/SBR composites. Thermogravimetric analysis indicated that the thermal degradation temperature of the lignin‐LDH/SBR at 10% weight loss (T10) decreased whereas 50% weight loss (T50) was much higher than that of pristine LDH/SBR due to barrier property of the well dispersed Lignin‐LDH in SBR matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1308‐1312, 2013  相似文献   

15.
Four different reclaiming methods involving important reclaiming factors such as temperature, shear force, and atmosphere were used to reclaim ground tire rubber. The structure and performance of the reclaimed rubber were investigated. The reclaimed samples were all found to be mixtures of three parts: the sol part, a loosely crosslinked gel part, and low molecular substances. For a reclaimed product to have both good processability and mechanical properties, the ideal structure should be that the sol fraction and its molecular weight (Mn) are as high as possible. However, the high sol fraction and high Mn cannot be reached at the same time because of the nonselective scission of the main chain and crosslink bonds. Thus, for a reclaimed rubber to have high quality, the presence of some amount of gel fraction is essential. Our preliminary results showed that the recommended reclaiming method would be a process under oxygen‐free atmosphere, without severe shear force, and at relative low temperature. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Polyimide (PI) fibers with enhanced mechanical properties and high thermal and dimensional stability were prepared via a two‐step dry‐spinning process through the introduction of 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride (BPDA) containing biphenyl units into rigid homopolyimide of pyromellitic dianhydride (PMDA) and 4,4′‐oxydianiline. The attenuated total reflectance–Fourier transform infrared spectra results imply that the incorporated BPDA moieties accelerate the imidization process and increase the imidization degree (ID) of the precursor fibers; this was attributed to the increased molecular mobility of the polymer chains. Two‐dimensional wide‐angle X‐ray diffraction spectra indicated that the prepared PI fibers possessed a well‐defined crystal structure and polymer chains in the crystalline region were highly oriented along the fiber axis. The PI fiber, with the molar ratio of PMDA/BPDA being 7/3, showed optimum tensile strength and modulus values of 8.55 and 73.21 cN/dtex, respectively; these were attributed to the high IDs and molecular weights. Meanwhile, the PI fibers showed better dimensional stability than the commercial P84 fiber, and this is beneficial for its security applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43727.  相似文献   

17.
The chemical modification of lignin can greatly enhance its functionality and exploit its application areas. To avoid the difficulties of separation and environmental pollution in the traditional liquid‐phase method, we prepared acetylated lignin by a mechanical‐activation‐assisted solid‐phase synthesis (MASPS) technology with a customized stirring ball mill as a reactor and studied its structure and properties. Ultraviolet–visible analysis showed that the degree of esterification (DE) of the acetylated lignin produced by the MASPS technique was 77.59%, whereas the DEs of those produced by traditional liquid‐phase synthesis (LPS) and thermal solid‐phase synthesis (TSPS) were only 42.29 and 27.54%, respectively. Fourier transform infrared spectroscopy and NMR analyses indicated that both phenolic hydroxyls and aliphatic hydroxyls participated in the reaction, and the reactivity of the phenolic hydroxyls was higher than that of the aliphatic hydroxyl groups. The acetylation of aliphatic hydroxyl mainly happened at the γ of arylglycerol‐β‐aryl ether (β‐O‐4). Scanning electron microscopy analysis showed that the acetylated lignins prepared by MASPS and TSPS were irregular blocks with coarse surfaces and loose structures, whereas the lignin prepared by LPS consisted mostly of regular balls with a smooth surface and a compact structure. Differential scanning calorimetry and thermogravimetric analyses indicated that the glass‐transition temperatures and thermal stability of the acetylated lignin increased by orders with the processing techniques of MASPS, TSPS, and LPS. MASPS integrated the activation and reaction in the same equipment without the use of a solvent and showed advantages of a high efficiency, environmental protection, and easy operation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44276.  相似文献   

18.
We describe an experimental approach for characterizing the local mechanical behavior of acrylonitrile butadiene styrene (ABS) structures processed through fused deposition modeling. ABS test specimens processed in various build orientations were subject to multiscale mechanical tests as well as local morphology and chemical analyses. Instrumented indentation, local dynamic mechanical analysis, and atomic force microscopy tests were used to explore the mechanical behavior and morphology of build surfaces and weld interfaces. An interfacial stiffening effect was found for the majority of the specimens tested, with up to a 40% increase in the indentation elastic modulus measured with respect to the build surfaces. Raman spectroscopy mapping of the interfacial areas revealed ~30% less butadiene/styrene and butadiene/acrylonitrile ratios with respect to analysis of the build surfaces. The results provide insight into the multiscale behavior of additive manufactured structures and offer the potential to guide processing–structure–property understanding of these materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43671.  相似文献   

19.
The essential work of fracture (EWF) method was adapted to determine the fracture toughness of poly(propylene‐block‐ethylene) (EPBC) based nanocomposites with different amounts (from 0 up to 5 wt %) of synthetic boehmite alumina (BA). The dispersion of BA in the matrix was studied by transmission and scanning electron microscopies. Agglomerated micronscale along with well dispersed nanoscale BA particles were present in the EPBC matrix. By contrast to the neat EPBC, all nanocomposites failed by unstable necking. Therefore the energy partitioning concept of the EWF was adapted and attention paid to the yielding‐related term. Both specific yielding‐related essential and nonessential work of fracture parameters increased linearly with the product of the yield stress and elongation at yield derived from static tensile tests. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40447.  相似文献   

20.
Two chemically modified phenolic resins (PFs) designed and developed for the matrix resins of organic friction materials were characterized. The braking performance of organic brake pads based on the two modified resins and reinforced with hybrid fibers was investigated on a full‐scale test bench. The results indicate that the modified PF with more internal friction units possessed much higher impact and compression strengths, greater toughness, and better braking stability. We concluded that the matrix resin with more adjustable structural units allowed for an adjustable Young's modulus and dynamic mechanical properties and, hence, could indirectly allow an adjustable friction coefficient for organic brake pads during braking process and, furthermore, enable the optimization of braking stability of the friction couples. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号