首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxy resins can exhibit some excellent properties. The basic principle of curing epoxy resins with a curing agent containing multiple amino groups is the crosslinking reaction between active hydrogen atoms from the curing agent and the oxirane groups in the epoxy resin structure. This study deals with the synthesis of derivative of hexachloro-cyclo-triphosphazene (HCCTP) using curing of epoxy resins. The study of our interest is nucleophilic substitution of HCCTP using N-[3-(trimethoxysilyl)propyl]ethylene diamine. The prepared derivative offers two potential advantages over conventional curing systems, namely improving properties during burning.  相似文献   

2.
Dendrocalamus latiflorus Munro (ma bamboo) was liquefied in phenol and polyhydric alcohol (polyethylene glycol/glycerol cosolvent) with H2SO4 as catalyst. Liquefied bamboos reacted with bisphenol A and epichlorohydrin were then employed to prepare copolymer epoxy resins. The curing property and thermal property of copolymer epoxy resins were investigated. The results showed that copolymer epoxy resins could cure at room temperature after the hardener was added, and its curing process was an exothermic reaction. Comparison showed that copolymer epoxy resins prepared with phenol‐liquefied bamboo as raw material had higher heat released than those prepared with polyhydric alcohol‐liquefied bamboo during curing. The DSC analysis showed that heat treatment could enhance the crosslinking of copolymer epoxy resins cured at room temperature. However, resins prepared with polyhydric alcohol‐liquefied bamboo had a lower glass transition temperature. The TGA analysis showed that resins prepared with phenol‐liquefied bamboo had better thermal stability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) and principal components analysis (PCA) were used to analyze diglycidyl ether of bisphenol A (DGEBA) and diglycidyl ether of bisphenol F (DGEBF) epoxy resin blend cured with isophorone diamine (IPD) hardener at different resin to hardener ratios. The aim was to establish correlations between the hardener concentration and the nature and progress of the crosslinking reaction. Insights into the cured resin structure revealed using ToF‐SIMS are discussed. Three sets of significant secondary ions have been identified by PCA. Secondary ions such as C14H7O+, CHO+, CH3O+, and C21H24O4+ showed variance related to the completion of the curing reaction. Relative intensities of CxHyNz+ ions in the cured resin samples are indicative of the un‐reacted and partially reacted hardener molecules, and are found to be proportional to the resin to hardener mixing ratio. The relative ion intensities of the aliphatic hydrocarbon ions are shown to relate to the cured resin crosslinking density. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
In this study, we aimed to reduce the cure time, and to lower the cure temperature of the benzoxazine compound. Therefore, curing reaction of benzoxazine with bisoxazoline or epoxy resin using the latent curing agent and the properties of the cured resins were investigated. The cure behavior of benzoxazine with bisoxazoline or epoxy resin using the latent curing agent was monitored by differential scanning calorimetry and measurements for storage modulus (G′). The properties of the cured resin were estimated by mechanical properties, electrical insulation, water resistance, heat resistance, and flame resistance. As a result, it was confirmed that by using the latent curing agent, cure time of benzoxazine and bisoxazoline or epoxy resin was reduced, and cure temperature was lowered. And it was found that the curing reaction using phenol‐novolac based benzoxazine (Na) as the benzoxazine compound could proceed more rapidly than that using bisphenol‐A based benzoxazine (Ba) as the benzoxazine compound. However, the cured resins from Ba and bisoxazoline or epoxy resin using the latent curing agent showed good heat resistance, flame resistance, and mechanical properties compared with those from Na and bisoxazoline or epoxy resin using the latent curing agent. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Poly(p‐vinylphenol) (VP) based benzoxazine was prepared from VP, formaline, and aniline. The curing behavior of the benzoxazine with the epoxy resin and the properties of the cured resin were investigated. Consequently, the curing reaction did not proceed at low temperatures, but it proceeded rapidly at higher temperatures without a curing accelerator. The reaction induction time or cure time of the molten mixture from VP based benzoxazine and epoxy resin was found to decrease, compared with those from conventional bisphenol A based benzoxazine and epoxy resin. The curing reaction rate of VP based benzoxazine and epoxy resin increased more than that of conventional bisphenol A based benzoxazine and epoxy resin. The properties of the cured resin from neat resins and from reinforced resins with fused silica were evaluated. The cured resins from VP based benzoxazine and epoxy resin showed good heat resistance, mechanical properties, electrical insulation, and water resistance compared to the cured resin from VP and epoxy resin using imidazole as the catalyst. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 555–565, 2001  相似文献   

6.
Blended hybrids based on silsesquioxane cyclohexyl trisilanol [STOH; i.e., (c‐C6H11)7Si7O9(OH)3] and epoxy resin 4,5‐epoxyhexyl‐1,2‐dimethyl acid diglycidyl ester (TDE‐85) were prepared with good compatibility of STOH up to 5 wt % with TDE‐85. The blended hybrid resins, with various STOH additions, were cured by 4,4′‐diaminodiphenylsulfone, and the curing reactions were investigated with differential scanning calorimetry. The incorporation of STOH increased the curing reaction of TDE‐85 for three active hydrogens existing in the STOH molecule. The storage moduli and glass‐transition temperatures of the cured hybrid resins were studied with dynamic mechanical analysis. The cured hybrids had higher storage moduli than the pure epoxy resins at lower temperatures and increased slightly even when the temperature was above the glass‐transition temperature. Two peaks appearing in tan δ curves indicated the block copolymer structure and two different glass‐transition temperatures of the cured hybrid resins. The thermal stability and flame retardancy of the cured hybrid resins were investigated with thermogravimetric analysis and limited oxygen index values, respectively. The results showed that introducing silsesquioxane–OH units into epoxy resins could improve the thermal stability and flame retardancy of the resins. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

7.
Epoxy/silsesquioxane‐OH (EP‐SDOH, ED) hybrid resins were prepared from cyclohexyl‐disilanol silsesquioxane (SDOH) and diglycidyl ether of bisphenol A via the reaction between silanol and the oxirane group, with the cobalt naphthanate as a catalyst. It was found that incorporation of SDOH allows the reaction between oxirane ring and Si? OH, and the silsesquioxane cage structure can be the main chain or as the side chain of the hybrid resin. The EP‐SDOH hybrid resins with various SDOH contents were cured by 4,4′‐diaminodiphenylsulphone, and the curing reaction was investigated by differential scanning calorimetry. The curing characteristics of EP‐SDOH hybrids had been observed to be influenced by the content of SDOH in the hybrid. The differential scanning calorimetry thermograms indicated that the EP‐SDOH hybrid exhibited a higher initial temperature, peak temperature, as well as final temperature than those of the pure epoxy resin when cured by the same curing agent 4,4′‐diaminodiphenylsulphone. The curing kinetic parameters were calculated by using the Ozawa method and the results indicated that EP‐SDOH hybrids possess the same curing mechanism as the pure epoxy resin. The properties of the cured EP‐SDOH hybrid resins such as the glass transition temperature (Tg), dynamic mechanical analysis, thermal stability, as well as the flame retardance were also investigated, and the results showed that introducing silsesquioxane‐OH unit into epoxy resin successfully modified the local structure, made the chain stiffness, restrict the chain mobility, and eventually improved thermal stability and flame retardance of epoxy resin. POLYM. ENG. SCI., 47:225–234, 2007. © 2007 Society of Plastics Engineers.  相似文献   

8.
A comparative evaluation of systematically tailored chemical structures of various phosphorus‐containing aminic hardeners for epoxy resins was carried out. In particular, the effect of the oxidation state of the phosphorus in the hardener molecule on the curing behavior, the mechanical, thermomechanical, and hot‐wet properties of a cured bifunctional bisphenol‐A based thermoset is discussed. Particular attention is paid to the comparative pyrolysis of neat cured epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (with a phosphorus content of about 2.6 wt %) and of the fire behavior of their corresponding carbon fiber‐reinforced composites. Comparatively faster curing thermosetting system with an enhanced flame retardancy and adequate processing behavior can be formulated by taking advantage of the higher reactivity of the phosphorus‐modified hardeners. For example, a combination of the high reactivity and of induced secondary crosslinking reactions leads to a comparatively high Tg when curing the epoxy using a substoichiometric amount of the phosphinate‐based hardener. The overall mechanical performance of the materials cured with the phosphorus‐containing hardeners is comparable to that of a 4,4′‐DDS‐cured reference system. While the various phosphorus‐containing hardeners in general provide the epoxy‐based matrix with enhanced flame retardancy properties, it is the flame inhibition in the gas phase especially that determines the improvement in fire retardancy of carbon fiber‐reinforced composites. In summary, the present study provides an important contribution towards developing a better understanding of the potential use of such phosphorus‐containing compounds to provide the composite matrix with sufficient flame retardancy while simultaneously maintaining its overall mechanical performance on a suitable level. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
o-Cresol novolac-type epoxy resins having hydroxymethyl group were synthesized. These epoxy resins were cured with a mixture of 4,4′-diaminodiphenylmethane and m-phenylenediamine (molar ratio, 6:4) as a hardener. Effects of molecular weight distribution of epoxy resins on curing behavior were studied. Curing behavior of epoxy resins with hardener were examined by differential scanning calorimetery (DSC), and cure reaction parameters were obtained. Viscoelastic properties of the cured epoxy resins were studied by dynamic mechanical analyzer. It was found that the lower the average molecular weight of the epoxy resin, that is, the higher the concentration of hydroxymethyl group, the shorter the onset time of exothermal reaction, the higher the rate constant (k), and the lower the activation energy (Ea) were. It was also found that glass transition temperature (Tg) of fully cured epoxy resins was higher than those of fully cured general novolac-type epoxy resins.  相似文献   

10.
In order to improve the flexibility properties of conventional epoxy resin, two novel soybean oil–based curing agents were synthesized. The curing agent obtained from the reaction between epoxy soybean oil and ethylene diamine was named EEDA, and another curing agent derived from epoxy soybean oil and isophorone diamine was named EIPDA. Several techniques were used to systematically investigate the effects of the structure and content of the two curing agents on the properties of the cured products. The Fourier transform infrared analysis demonstrated that epoxy resin reacted with soybean oil–based curing agents. The differential scanning calorimetry analysis showed that the curing process between diglycidyl ether of bisphenol‐A (DGEBA) and soybean oil–based curing agents only had an exothermic peak. Thermogravimetric analysis indicated that the cured DGEBA/EIPDA system was more stable than the DGEBA/EEDA system below 300 °C. Mechanical tests and Shore D hardness tests suggested that excessive EEDA greatly enhanced the toughness of cured products because of the introduction of aliphatic chains.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44754.  相似文献   

11.
In this study, a novel Schiff base of melamine used as flame‐retardant curing agent for epoxy resins, was synthesized via condensation reaction of 4‐hydroxybenzaldehyde with melamine, followed by the addition of 9,10‐dihydro‐9‐oxa‐10‐phosphaphen‐anthrene 10‐oxide (DOPO) to the resulting imine linkage. The structure of DOPO‐containing melamine Schiff base (P‐MSB) was characterized by Fourier transformed infrared spectroscopy, 1H‐nuclear magnetic resonance (1H‐NMR) and 31P‐NMR. The compound (P‐MSB) was used as a reactive flame retardant in o‐cresol formaldehyde novolac epoxy resin (CNE) to prepare flame‐retardant epoxy resins for electronic application. The thermal and flame‐retardant properties of the epoxy resins cured by various equivalent ratios phenol formaldehyde novolac (PN) and P‐MSB were investigated by the nonisothermal differential scanning calorimetry, the thermogravimetric analysis, and limiting oxygen index test. The obtained results showed that the cured epoxy resins possessed high Tg (165°C) and good thermal stability (T5%, 321°C). Moreover, the P‐MSB/CNE systems exhibited higher limiting oxygen index (35) and more char was maintained in P‐MSB/CNE systems than that in PN/CNE system and the effective synergism of phosphorus–nitrogen indicated their excellent flame retardancy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
谭家顶  程珏  郭晶  张军营 《化工学报》2011,62(6):1723-1729
固化剂结构对环氧树脂的固化行为和固化物性能具有重要影响,本文研究了聚醚胺(D-230)、异佛尔酮二胺(IPDA)和3,3'-二甲基-4,4'-二氨基-二环己基甲烷(DMDC) 3种胺类固化剂与实验室自制的低翻度环氧树脂A进行固化反应.通过薪度分析、红外(FTIR)光谱分析、DSC分析等手段研究了环氧树脂与固化剂反应程度...  相似文献   

13.
A new soften curing agent for toughening epoxy resins was synthesized by m-phenylene diamine modified with epoxypropyl butyl ether. The curing processes of epoxy resin/modified m-phenylene diamine were traced by differential scanning calorimetry (DSC), then kinetic parameters, ΔE and n, were deduced. Fourier transform infrared (FTIR) analysis showed that the longer the reaction time was, the smaller the absorption peaks of epoxy group were. The results of the mechanical properties demonstrated that the impact property of the epoxy resin cured by modified m-phenylene diamine at the moderate temperature was better than that of cured by unmodified one because of the introduction of soft ether chain. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Epoxy resins used for reinforcement of bridges and buildings are explored in the light of both curing rates and mechanical properties when resins are contaminated with water in outdoor construction. The developed resin is composed of a conventional resin of bisphenol A diglycidyl ether and a hardener with a polyoxipropyldiamine base. Curing rates were obtained by time variation of the near infrared absorbance of amine groups in the hardener at various water contents. They obeyed the second‐order reaction law with respect to the hardener, of which the activation energy was 70 kJ mol−1. Water increased the reaction rate. Mechanical properties such as ultimate tensile strength, adhesive shear stress, and flexural strength were measured at various water contents for the developed epoxy resin and the commercially available low‐temperature epoxy resin. The developed cured resin shows not only higher mechanical strengths but also much less deterioration by water than the conventional cured resin. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 214–220, 2001  相似文献   

15.
Two organophosphorus-based diamines containing aromatic moieties has been synthesized and used as a curing and flame retarding agent for epoxy resin coatings. This agent functions not only as a crosslinking materials in the Epon 828 epoxy resin curing process but also as a fire retarding compound to produce thin films or composites upon curing. Phenyl phosphonic ethylene diamine diamide (PPEDD) was synthesized via condensation of phenylphosphonic dichloride (PPDC and ethylenediamine (EDA)). Likewise, phenyl phosphonic p-phenylene diamine diamide (PPPDD) was synthesized via condensation of PPDC and p-phenylenediamine (PDA). Kinetics studies of the curing reaction of the two phosphorodiamidates were carried out in comparison with the corresponding non-phosphorus containing reference crosslinking agents, EDA and PDA. Thermal stability of the cured epoxy were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, flame retardant properties of the materials was investigated by limiting oxygen index (LOI) measurements. The results show that epoxy resin cured with phosphorodiamidate possesses higher thermostability than that of the non-phosphorus containing counterpart. This is evident by a significantly higher amount of char formed upon burning. More importantly, the LOI of 27 and 31 was observed in the PPEDD-cured epoxy resin and PPPDD-cured epoxy resin compared with those prepared from non-phosphorus curing agents (20 for EDA and 21 for PDA). This was obtained only with approximately 2–3 wt.% of phosphorus content.  相似文献   

16.
Self‐emulsified water‐borne epoxy curing agent of nonionic type was prepared using triethylene tetramine (TETA) and derivative of epoxy resin as a capping agent, which was synthesized by liquid epoxy resin (E51) and polyethylene glycol (PEG), and the curing agent possessed emulsification and curing properties at the same time. The curing agent with good property of emulsifying liquid epoxy resin could be obtained under the condition of the molar ratio of PEG : E51 : TETA as 0.8 : 1 : 3.5 at 80°C for 5 h. The mean particle size of the emulsion liquid was about 220 nm with the prepared curing agent and epoxy resin at the mass ratio of 1 : 3. The structure of the emulsion‐type curing agent was confirmed by FTIR and 1H NMR spectra, and the mechanism of cured film formation was also analyzed by SEM photographs. The cured film prepared by the emulsion‐type curing agent and epoxy resin under ambient cure conditions showed good properties even at high staving temperature. This study provides useful suggestions for the application of the water‐borne epoxy resins in coating industry. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2652–2659, 2013  相似文献   

17.
Cohesive and adhesive properties have been compared of epoxy resins crosslinked either with chromic‐based hardener or with conventional amine‐type hardener. Higher cohesive parameters, such as yield strength, Young's modulus and impact resistance were observed for the material cured with chromic hardener. The adhesive strength of metal‐metal joints (steel‐aluminium) has been also found to be higher for chromic hardener containing epoxy compared to conventional curing systems. The time dependencies of adhesive strength after thermal treatment at 140°C of the joints showed a higher thermal resistance of the epoxy with chromic hardener when compared to the amine cured resin.  相似文献   

18.
A novel phosphorus‐containing dicyclopentadiene novolac (DCPD‐DOPO) curing agent for epoxy resins, was prepared from 9,10‐dihydro‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and n‐butylated dicyclopentadiene phenolic resin (DCPD‐E). The chemical structure of the obtained DCPD‐DOPO was characterized with FTIR, 1H NMR and 31P NMR, and its molecular weight was determined by gel permeation chromatography. The flame retardancy and thermal properties of diglycidyl ether bisphenol A (DGEBA) epoxy resin cured with DCPD‐DOPO or the mixture of DCPD‐DOPO and bisphenol A‐formaldehyde Novolac resin 720 (NPEH720) were studied by limiting oxygen index (LOI), UL 94 vertical test and cone calorimeter (CCT), and differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. It is found that the DCPD‐DOPO cured epoxy resin possess a LOI value of 31.6% and achieves the UL 94 V‐0 rating, while its glass transition temperature (Tg) is a bit lower (133 °C). The Tg of epoxy resin cured by the mixture of DCPD‐DOPO and NPEH720 increases to 137 °C or above, and the UL 94 V‐0 rating can still be maintained although the LOI decreases slightly. The CCT test results demonstrated that the peak heat release rate and total heat release of the epoxy resin cured by the mixture of DCPD‐DOPO and NPEH720 decrease significantly compared with the values of the epoxy resin cured by NPEH720. Moreover, the curing reaction kinetics of the epoxy resin cured by DCPD‐DOPO, NPEH720 or their mixture was studied by DSC. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44599.  相似文献   

19.
Poly(ethylene terephthalate) waste was depolymerised in the presence of diethylene- or tetraethylene glycol and manganese acetate as a catalyst. An epoxy resin was then prepared by the reaction of these oligomers with epichlorohydrin in presence of NaOH as a catalyst. The produced oligomers were condensed with maleic anhydride and ethylene glycol to produce unsaturated polyester. The chemical structures of the resulting epoxy and unsaturated polyester resins were confirmed by 1HNMR. The vinyl ester resins were used as cross-linking agents for unsaturated polyester resin diluted with styrene, using free radical initiator and accelerator. The 2-amino ethyl piprazine was used as hardener for epoxy resins. The curing behaviour of the unsaturated polyester resin, vinyl ester resins and styrene was evaluated at different temperatures ranged from 25 to 55 °C to calculate the curing activation energy of the system. The cured epoxy and unsaturated polyester resins were evaluated in coating application of steel.  相似文献   

20.
We have synthesized a series of epoxy resins containing melamine phosphate (MP) and investigated their thermal and flame retardation properties. MP functions as a hardener and a flame retardant or as an additive of the cured epoxy resin to enhance flame retardation properties of epoxy resins. The reactions of DGEBA cured in the presence of MP were monitored by NMR and FTIR. Our results show that in both reactive and additive modes, MP is effective in increasing limiting oxide index (LOI) and the char yields of epoxy resins at lower phosphorous content. We observed that flame retardation by MP in its reactive mode is better than in its additive mode; the same phenomenon was found also for the glass-transition temperature (T g). Thermogravimetric analysis (TGA) demonstrated that epoxy resins containing MP decompose at relatively lower temperatures than those lacking MP; this decomposition results in a protective layer forming that prevents the epoxy resins from decomposing further by combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号