首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have grown hierarchical structure of bismuth oxycloride (BiOCl) on SrO‐Bi2O3‐B2O3 (SBBO) transparent glass‐ceramic. SBBO glass‐ceramics were fabricated via conventional melt‐quenching technique while BiOCl was grown by etching the glass via HCl. Enhanced visible light driven photocatalytic activity and increasing hydrophobic feature were observed on BiOCl grown SBBO than as‐quenched SBBO glass‐ceramics. Contact angle analysis showed maximum contact angle of 130.7° on the surface of most BiOCl grown SBBO glass‐ceramic. Furthermore, under visible light illumination water contact angle decreased from 130.7° to 30.8°. Such photo‐induced hydrophilicity and catalytic performance in translucent glass‐ceramics lead self‐cleaning applications.  相似文献   

2.
The influence of the immersion period on the crystallization of polycarbonate (PC) was investigated, and the resulting texture configurations of the crystal structures were reconstructed with polydimethylsiloxane (PDMS). Analytical tools, including optical microscopy, scanning electron microscopy, atomic force microscopy, X‐ray diffraction, the sessile drop technique, Fourier transform infrared spectroscopy, microtribometry, and ultraviolet–visible spectrophotometry, were used to characterize crystallized PC and PDMS surfaces. We found that the crystallized PC surface possessed microsize/nanosize spherulites, voids, and fibrils, and the increasing immersion period increased the texture height and spherulite concentration at the surface. The residual stress in the crystallized PC wafer was compressive, and it was on the order of ?30 MPa. The friction coefficient of the crystallized PC surface remained lower than that of the as‐received PC wafer, and the increase in the immersion period lowered the friction coefficient. The crystallized PC surface demonstrated superhydrophobic characteristics, and the maximum contact angle occurred with 6 min of immersion. The PDMS exactly reconstructed the texture of the crystallized PC surface, except those of the nanofibrils and subnanofibrils. The droplet contact angle attained a higher values for the PDMS replicated surfaces than for those corresponding to the crystallized PC wafer. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43467.  相似文献   

3.
Large‐scale two‐dimensional ZnO nanocrystal films on aluminum substrate were fabricated by a one‐step hydrothermal method under mild conditions, where all the ZnO nanocrystals had a lamellar structure generally perpendicular to the substrates and formed network‐like porous configurations. The morphologies of the films were dependent on both the reaction temperature and concentration of zinc. The wettability of the ZnO films was assessed by measuring the water contact angle without any surface functionalisation. The porous structures of the as‐prepared films could effectively enhance its hydrophobicity and the water contact angle ranged from 40° to 135° depending on the surface morphology and the arrangement of ZnO planes, indicating a simple and promising route to make aluminum surface waterproof and even self‐cleaning. The hydrophobic ZnO surface could be switched to hydrophilic state by UV irradiation.  相似文献   

4.
Organic superhydrophobic films were prepared by utilizing TA‐N fluoroalkylate (TAN) and methyl methacrylate (MMA) copolymer as water‐repellent materials and inorganic silica powder as surface roughness material has been developed. Coating solutions prepared by adding silica powders into copolymer solution directly (one‐step method) and by adding silica powders into monomers and allowing them to react (two‐step method). The results showed that contact angles of the films prepared by one‐step method (37.6 wt % of silica powders in the coating solution) were greater than 150°, but the transmittance of the film at visible light was only 30%. On the other hand, the contact angle of films prepared by two‐step method (20 wt % of silica powders in the coating solution) was greater than 160° and the transmittance of the film was greater than 90%. The contact angle of the film prepared by poly(octyl acrylate), POA, was 32.1°, but while introducing silica powder into the system, the contact angle of the film was reduced to be smaller than 5°. Thus, superhydrophobic and superhydrophilic films can be obtained by introducing a roughening material on the hydrophobic surface and the hydrophilic surface, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1646–1653, 2007  相似文献   

5.
The effects of exposure time and vapor pressure on the crystallization behaviors of bisphenol‐A polycarbonate (BAPC) films were investigated at 25°C by using differential scanning calorimetry (DSC). Double melting peaks were observed for various BAPC samples after vapor‐induced crystallization. The low temperature melting peak shifted to higher temperature and became sharper with increasing exposure time, and could be assigned to defective crystals with smaller crystal size. Crystallinity and average crystal dimension normal to (020) were calculated from wide‐angle X‐ray diffraction spectra. A good agreement was obtained between crystallinity values obtained from WAXD and those from DSC. The morphology of crystallized samples after various exposure time periods was examined by means of polarized optical microscopy. Nucleation occurred at the initial stage of vapor‐induced crystallization. Poor crystals become perfect through segment reorganization with increasing exposure time, and spherulites' growth was observed. The average diameter of spherulites increased from 2 μm for 1 h, to 7 and 16 μm after 3 and 56 h, respectively. POLYM. ENG. SCI., 46:729–734, 2006. © 2006 Society of Plastics Engineers  相似文献   

6.
The grafted homopolymer and comb‐shaped copolymer of polyacrylamide were prepared by combining the self‐assembly of initiator and water‐borne surface‐initiated atom transfer radical polymerization (SI‐ATRP). The structures, composition, properties, and surface morphology of the modified PET films were characterized by FTIR/ATR, X‐ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electronic microscopy (SEM). The results show that the surface of PET films was covered by equable grafting polymer layer after grafted polyacrylamide (PAM). The amount of grafting polymer increased linearly with the polymerization time added. The GPC date show that the polymerization in the water‐borne medium at lower temperature (50°C) shows better “living” and control. After modified by comb‐shaped copolymer brushes, the modified PET film was completely covered with the second polymer layer (PAM) and water contact angle decreased to 13.6°. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
A weather resistant super‐hydrophobic coating that can offer good substrate adhesion and yet to be easily processed at large scale can be of practical use in emerging fields of self‐cleaning and anti‐icing paint, combing all these properties together remains challenging task. Here we describe a composite coating composed of a fluorinated epoxy resin emulsion with embedded in situ surface‐modified dual‐scale nano‐silica, which displayed durable super‐hydrophobicity and excellent adhesive strength. The as‐prepared coating possesses water contact angle of 158.6 ± 1°, sliding angle around 3.8 ± 0.2° which remain stable even under acidic/alkaline, heat/cool, and accelerated aging treatment. The results demonstrate that surface roughness had a micron‐ and nanometer scale distribution with increased particle loading beyond 40 wt %. Through quantitative comparison of surface Attenuated Total Reflection (ATR) with bulk FT‐IR transmission spectra, a gradient coating with surface enrichment of hydrophobic groups was determined. The air‐side fluorinated polysiloxane‐rich layer endows coating with weather‐resistance and ultra‐hydrophobicity while bottom epoxy resin layer enhances substrate adhesion. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40955.  相似文献   

8.
A newly developed fluorine‐free method to render robust superhydrophobic polyethylene terephthalate (PET) fabric is introduced with alkaline hydrolysis followed by thermal hydrophobic aging process, i.e., nonchemical finishing. The superhydrophobic PET fabric shows a static contact angle of 170.7° ± 2.4° and a shedding angle of 8.6° ± 0.7°. Breathability and color of the fabricated PET fabric are improved and not changed. The alkaline hydrolyzed and thermal hydrophobic aged PET fabric is easily bent and has increased smoothness, fullness, and softness. Additionally, it has good durability for tape test, abrasion test, pH test, and washing test under an extra aging process that gives rise to self‐healing. Self‐cleaning property of the superhydrophobic PET fabric is excellent. Therefore, the alkaline hydrolyzed and thermally hydrophobic aged superhydrophobic fabric has a potential for commercial applications in functional or biomedical textiles, goods and related industries, with improved human/environmental friendliness and efficiency of care.  相似文献   

9.
Surface segregation in polymer blend systems between 3,3′,4,4′‐biphenyltetracarboxylic dianhydride/4,4′‐diaminodiphenyl ether (s‐BPDA/ODA) polyimide and block copolymer based on polysiloxane‐block‐polyimide (SPI) has been investigated. These polyimide blends, having various compositions of the SPI, were processed by a solution casting method. The glass substrate used in the film‐casting process shows significant effect on the migration of surface segregated species to enrich the air‐exposed surface, whereas the more polar s‐BPDA/ODA tends to remain close to the polar glass substrate. X‐ray photoelectron spectroscopy reveals that even at low SPI concentration, the siloxane moieties in the block copolymer tend to segregate into the air side surface. Contact angle measurement evidently indicates an enrichment of the hydrophobic siloxane fraction on the blend film surface. The average water contact angle of glass side surface is 77°C whereas that of the air side is about 102°C in every blend ratio. This behavior confirms the surface segregation phase separation in these polymer blends. Finally, the surface morphology observed by atomic force microscopy also suggests segregation type of phase separation in these blend systems. POLYM. ENG. SCI., 47:489–498, 2007. © 2007 Society of Plastics Engineers.  相似文献   

10.
The synthesis and properties of comb‐like polymer‐graphene nanocomposites via surface initiated atom transfer radical polymerization is reported. The crystallization temperature (Tc) and melt temperature (Tm) of the comb‐like homopolymer increases from −18 to −8 °C and 1 to 11 °C, respectively, in the nanocomposite synthesized with 0.6 wt % graphene initiator. The rheological properties like modulus and complex viscosity of the nanocomposite show a twofold increase. Transmission electron microscopy results of the nanocomposite show a well‐intercalated structure with nanoscale distribution of graphene domains and in scanning electron microscopy a sheet‐like structure with corrugations, and crumples are seen. The hydrophobicity, as measured by water contact angle, increases from 101° in the homopolymer to 118° in the nanocomposite. The nanocomposites exhibit substantial increase in adhesive strength on different substrates, with peel strength increasing by more than 1000 times, as compared to the homopolymer. The improved tack and adhesion properties of the nanocomposites suggest them as novel materials for adhesive applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45885.  相似文献   

11.
Based on the “lotus effect” principle, smooth microreliefs of polyvinylidene fluoride (PVDF) membrane were prepared via thermally induced phase separation process. Hydroxyl groups were introduced into PVDF membrane by pretreatment with KOH/alcohol solution. Subsequently, these hydroxyl groups grafted with (CH3)2SiCl2/CH3SiCl3 to form nano‐clusters, which were decorated on the microreliefs of PVDF membrane. Scanning Electronic Microscopy (SEM) and Atomic Force Microscope (AFM) analysis showed the micro‐ and nano‐scale structures, similar to lotus leaf, were successfully fabricated on the PVDF membrane surface. The water contact angle and sliding angle on the fabricated lotus‐leaf‐like PVDF membrane surface were 154 and 4°, respectively. Self‐cleaning test indicated that the lotus‐leaf‐like surface of PVDF membrane has excellent superhydrophobic and self‐cleaning properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Preparation of superhydrophobic silica‐based surfaces via sol–gel process by adding polyethylene glycol (PEG) polymer into the precursor solution has been developed. Surface roughness of the films was obtained by removing the organic polymer at 500°C and then the hydrophobic groups bonded onto the films were obtained by self‐assembly modification with a monolayer. Characteristic properties of the as‐prepared films were analyzed by contact angle measurements, scanning electron microscopy, atomic force microscopy, UV–vis scanning spectrophotometer, and X‐ray photoelectron spectrophotometer. The experimental parameters were varied by the type of silane species, the R ratio, the hydrolysis time of the precursor solution, the molecular weight of PEG, the pH value of mixing solution, and the different reagents for modification. The results showed that optimum ratio of TEOS/H2O/ethanol in the sol–gel process for precursor solution was set to 1/10/4. The better contact angles of the films can be obtained by the acid catalyst reaction, especially the pH value of mixing solution was adjusted to 0. When the as‐prepared rough films were modified with (tridecafluoro‐1,1,2,2‐tetrahydrooctyl) dimethylchlorosilane (TFCS), the contact angle of the film can be promoted to 150.4°, and the transmittance of the films in the visible light region was greater than 94.5%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
In this study, silver nanoparticles were synthesized on cotton fabric modified with 3‐aminopropyltrimethoxysilane (APTMS) using sodium citrate as a reducing/stabilizing agent by microwave‐assisted process. The presence of a highly oriented amino‐terminated self‐assembled monolayer and formation of APTMS was demonstrated by an X‐ray photoelectron spectroscopy (XPS) analysis. The silver‐coated cotton fabrics were examined by scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX). UV protection, antistatic, and hydrophobic properties were also evaluated. The results show that silver‐coated fabric modified with APTMS possesses excellent antistatic, UV protection with ultraviolet protection factor (UPF) of 396.5 and superhydrophobic properties with contact angle of 153.2°. APTMS pretreatment improves the adhesive strength between silver coatings and cotton fabric. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3862–3868, 2013  相似文献   

14.
Self‐cleaning polymeric fibers have been successfully prepared by depositing ZnO nanoparticle onto wool and polyacrylonitrile (PAN) fibers with good compatibility and significant photocatalytic self‐cleaning activity using the sol‐gel process at ambient temperature. scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X‐ray diffraction, Brunauer‐Emmett‐Teller surface area analysis, and thermogravimetric analysis have been adopted as the characterization techniques. Transmission electron microscopy studies revealed presence of zinc oxide nanoparticles with 10–15 nm in size. Brunauer‐Emmett‐Teller measurement showed surface area of 48 m2/g for the ZnO nanoparticles. Photocatalytic activity of the self‐cleaning materials were tested by measuring the photo‐assisted degradation of methylene blue (MB) and eosin yellowish (EY) under ultraviolet‐visible illumination. The results indicate that both of the ZnO‐coated polyacrylonitrile and ZnO‐coated wool fibers acquire photocatalytic activity toward dyes degradation. The photocatalytic activity of the treated fibers is maintained upon several numbers of photodegradation cycles. This facile and cheap preparation technique can be also applied to new polymeric fabrics to produce self‐cleaning materials for industrial application. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The wettability and crystallization behaviors of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV)‐graft‐polyacrylamide (PAM) films were studied. X‐ray photoelectron spectroscopy analyses illustrated that about 62 atom % of the total polar functionalities on the grafted film with 17% grafting percentage (GP) was amide groups. Wide‐angle X‐ray diffraction results suggest that grafted PAM induced defects in PHBV crystals and influenced their crystal structure. Differential scanning calorimetry (DSC) spectra showed the two melting regions, 60–90 and 145–170°C, of the imperfect PHBV crystals of the grafted films. Grafted PAM could suppress the recrystallization of PHBV, which was consistent with the polarizing optical microscopy results, in which the maximum PHBV spherulite diameter decreased from 350 μm for the PHBV film to 50 μm for the film with 53% GP. In addition, DSC studies revealed that the crystallinity of the grafted films decreased with increasing GP, which facilitated the diffusion of water into the films. The water contact angle of grafted films decreased and the water‐swelling percentage increased as GP went up. These results demonstrate the potential of PHBV‐g‐PAM for wettable surface constructs in tissue engineering applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

16.
Electrospun fibres of thermally responsive triblock copolymer polystyrene‐block‐poly(N‐isopropylacrylamide)‐block‐polystyrene were prepared. Fibre morphology and swelling were studied below and above the lower critical solution temperature of poly(N‐isopropylacrylamide) (PNIPAM) using cryo‐electron microscopy. Cryo‐transmission electron microscopy showed that the fibre diameter increased up to 150% after immersion in water at 20 °C. In contrast, at 45 °C the fibre diameter increased considerably less. The sessile drop technique was used to characterize temperature‐dependent wetting of fibre mats. Contact angle (θCA) measurements revealed that a block copolymer fibre mat changed from hydrophobic (θCA > 90°) to hydrophilic (θCA < 90°) state within seconds after applying a water droplet on it at 20 °C. At 40 °C the initial contact angle was measured to be higher (135°) and it decreased much less than at 20 °C during the first minute of measurement. We observed using scanning electron microscopy that the electrospun fibres of the block copolymer having 77 wt% of PNIPAM lost their cylindrical shape and changed from fibres to thin sheets at both 20 and 40 °C within seconds after applying water on the fibres. Fibres having 55 wt% of PNIPAM were observed to be stable in water at both 20 and 40 °C, which resulted, surprisingly, in fibre mats with the strongest effects on thermally sensitive wetting. We discuss the surprising results and the implications that the evolution of fibre surface roughness has on the long‐term wetting behaviour, demonstrating a self‐adaptable hydrophilicity/hydrophobicity nature of the fibre mats. © 2013 Society of Chemical Industry  相似文献   

17.
All‐polyethylene composites exhibiting substantially improved toughness/stiffness balance are readily produced during conventional injection molding of high density polyethylene (HDPE) in the presence of bimodal polyethylene reactor blends (RB40) containing 40 wt% ultrahigh molar mass polyethylene (UHMWPE) dispersed in HDPE wax. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) analyses shows that flow‐induced crystallization affords extended‐chain UHMWPE nanofibers forming shish which nucleates HDPE crystallization producing shish‐kebab structures as reinforcing phases. This is unparalleled by melt compounding micron‐sized UHMWPE. Injection molding of HDPE with 30 wt% RB40 at 165 °C affords thermoplastic all‐PE composites (12 wt% UHMWPE), improved Young's modulus of 3400 MPa, tensile strength of 140 MPa, and impact resistance of 22.0 kJ/m2. According to fracture surface analysis, the formation of skin‐intermediate‐core structures accounts for significantly improved impact resistance. At constant RB40 content both morphology and mechanical properties strongly depend upon processing temperature. Upon increasing processing temperature from 165 °C to 250 °C the average shish‐kebab diameter increases from the nanometer to micron range, paralleled by massive loss of self‐reinforcement above 200 °C. The absence of shish‐kebab structure at 250 °C is attributed to relaxation of polymer chains and stretch‐coil transition impairing shish formation.  相似文献   

18.
Well‐defined poly(dimethylsiloxane‐b‐styrene) diblock copolymers were prepared by reversible addition–fragmentation chain‐transfer (RAFT) polymerization. Monohydroxyl‐terminated polydimethylsiloxane was modified to form a functional polydimethylsiloxane/macro‐RAFT agent, which was reacted with styrene to form the diblock copolymers. The chemical compositions and structures of the copolymers were characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography. The surface properties and morphology of the copolymers were investigated with static water contact‐angle measurements, X‐ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy, which showed a low surface energy and microphase separation surfaces that were composed of hydrophobic domains from polydimethylsiloxane segments. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Recently, multifunctional films are of particular interest to scientists owing to their diversified properties. Here, we demonstrated that self‐cleaning, self‐extinguishing, and high conductive films were fabricated by simple solvent‐casting method from poly(amide‐imide)/polyaniline composites. The multifunctional films exhibited controllable water contact angles varying from 65° to 120° and high electrical conductivities of over 40 S m?1. Moreover, due to the improved hydrophobicity, the multifunctional films showed self‐cleaning characteristics and were used to collect the dust powders easily and perfectly during the dispensed water droplet rolling off the solid surface. Furthermore, the self‐extinguishing property of the multifunctional films was confirmed by thermogravimetric analysis. The special film composition and morphology are the two important aspects that induce such unusual properties. The polyaniline content can strongly influence the morphology of the composite films, which in turn display different hydrophobicities and conductivities. POLYM. ENG. SCI., 59:E33–E43, 2019. © 2018 Society of Plastics Engineers  相似文献   

20.
Low‐density polyethylene (LDPE) was treated with a low‐temperature cascade arc plasma torch (LTCAT) of argon with or without adding a reactive gas of oxygen or water vapor. The static sessile droplet method and the dynamic Wilhelmy balance method were employed to perform surface contact angle measurement in order to investigate and characterize the effects of LTCAT treatment on LDPE surfaces. These treatment effects included changes in surface wettability and surface stability and possible surface damage that would create low‐molecular‐weight oligomers on the treated surface. Experimental results indicated that the combination of static and dynamic surface contact angle measurements enabled a comprehensive investigation of these effects of plasma treatment on a polymer surface. Without the addition of a reactive gas, a 2‐s argon LTCAT treatment of LDPE resulted in a stable hydrophilic surface (with a water contact angle of 40°) and little surface damage. The addition of oxygen into argon LTCAT produced a less stable LDPE surface and showed more surface damage. Adding H2O vapor into argon LTCAT produced an extremely hydrophilic surface (with a water contact angle < 20°) of LDPE but with pronounced surface damage. When compared with conventional radio frequency (13.56 MHz) plasmas, LTCAT treatment provides a much more rapid, effective, and efficient method of surface modification of LDPE. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 2528–2541, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号