首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, novel poly(ε‐caprolactone) (PCL) composite scaffolds were prepared for bone tissue engineering applications, where gentamicin‐loaded β‐tricalcium phosphate (β‐TCP)/gelatin microspheres were added to PCL. The effects of the amount of β‐TCP/gelatin microspheres added to the PCL scaffold on various properties, such as the gentamicin release rate, biodegradability, morphology, mechanical strength, and pore size distribution, were investigated. A higher amount of filler caused a reduction in the mechanical properties and an increase in the pore size and led to a faster release of gentamicin. Human osteosarcoma cells (Saos‐2) were seeded on the prepared composite scaffolds, and the viability of cells having alkaline phosphatase (ALP) activity was observed for all of the scaffolds after 3 weeks of incubation. Cell proliferation and differentiation enhanced the mechanical strength of the scaffolds. Promising results were obtained for the development of bone cells on the prepared biocompatible, biodegradable, and antimicrobial composite scaffolds. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40110.  相似文献   

2.
In this work, novel antibacterial composites were prepared by using poly(ε‐caprolactone) (PCL) as the main matrix material, and gentamicin‐loaded microspheres composed of β‐tricalcium phosphate (β‐TCP) and gelatin. The purpose is to use this biodegradable material as a support for bone tissue. This composite system is expected to enhance bone regeneration by the presence of β‐TCP and prevent a possible infection that might occur around the defected bone region by the release of gentamicin. The effects of the ratio of the β‐TCP/gelatin microspheres on the morphological, mechanical, and degradation properties of composite films as well as in vitro antibiotic release and antibacterial activities against Escherichia coli and Staphylococcus aureus were investigated. The results showed that the composites of PCL and β‐TCP/gelatin microspheres had antibacterial activities for both bacteria. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
In this study, β‐tricalcium phosphate/phosphate‐based glass (β‐TCP/PG) composite spheres were prepared by an extrusion‐spheronization method featuring high production and fine control of sphere size. Subsequently, fully interconnected β‐TCP composite ceramic sphere‐based (TCCS) scaffolds were fabricated by sintering the randomly packed β‐TCP/PG composite spheres. The results manifested that at least 20% microcrystalline cellulose (MCC) was required to obtain β‐TCP/PG composite spheres in good spherical shape. The prepared TCCS scaffolds showed hierarchical pore architecture, which consisted of interconnected macropores among the spheres, a hollow core in the sphere, plentiful medium‐sized pores in the sphere shell and micropores among the grains. The pore architecture and mechanical strength of the TCCS scaffolds could be tailored by adjusting the sintering temperature, sphere size, and amounts of PG and MCC in the β‐TCP/PG composite spheres. This work is believed to open up new paths for the design and fabrication of interconnected bioceramic scaffolds for application in bone regeneration.  相似文献   

4.
Tissue engineering holds an exciting promise in providing a long‐term cure to bone‐related defects and diseases. However, one of the most important prerequisites for bone tissue engineering is an ideal platform that can aid tissue genesis by having biomimetic, mechanostable, and cytocompatible characteristics. Chitosan (CS) was chosen as the base polymer to incorporate filler, namely beta‐tri calcium phosphate (β‐TCP). This research deals with a comparative study on the properties of CS scaffolds prepared using micro‐ and nano‐sized β‐TCP as filler by freeze gelation method. The scaffolds were characterized for their morphology, porosity, swelling, structural, chemical, biodegradation, and bioresorption properties. Rheological behavior of polymer and polymer‐ceramic composite suspensions were analyzed and all the suspensions with varying ratios of β‐TCP showed non‐Newtonian behavior with shear thinning property. Pore size, porosity of micro‐ and nano‐sized composite scaffolds are measured as 48–158 μm and 77% and 43–155 μm and 81%, respectively. The scaffolds containing nano β‐TCP possess higher compressive strength (~2.67 MPa) and slower degradation rate as compared to composites prepared with micro‐sized β‐TCP (~1.52 MPa). Bioresorbability, in vitro cell viability by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, proliferation by Alamar blue assay, cell interaction by scanning electron microscope, and florescence microscopy further validates the potentiality of freeze‐gelled CS/β‐TCP composite scaffolds for bone tissue engineering applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41025.  相似文献   

5.
Infection is still a major concern in bone implants, especially in the implants with porous structures. As silver shows superior and broad‐spectrum antibacterial activity, porous silver‐doped β‐tricalcium phosphate (β‐TCP) bioceramics are prepared with 5% and 10% nanometer silver. The bioceramics show similar porous macrostructure with pure β‐TCP bioceramic, except slightly color change. They have almost identical microstructure to its pure β‐TCP counterpart under field emission scanning electron microscope. Their physical, chemical, and mechanical properties were investigated with X‐ray diffraction, Fourier transforming infrared spectrometer, and AG‐5kN, and no significant difference has been found between silver‐doped β‐TCP bioceramics and pure β‐TCP bioceramic. Bactericidal concentration of silver ions was detected in the solution soaked with the bioceramics. They can efficiently inhibit the growth of Staphylococcus epidermidis and Styphylococcus aureus, but show no cytotoxicity to L929 cells. It suggests that silver‐doped β‐TCP bioceramics can be developed into new type of bone substitutes with anti‐infection properties.  相似文献   

6.
A two‐step process for preparing glass fibers (GFs) reinforced β‐nucleated PP composites was designed and developed. The complementary approach combined GFs reinforcement and β‐nucleating agents regulation using N,N′‐dicyclohexyl‐2,6‐napthalene‐dicarboxamide (TMB‐5) in the presence of maleic anhydride grafted polypropylene (PP‐g‐MA) through extrusion blending. The influence of TMB‐5 and GFs on the mechanical properties and crystallization behavior of PP was studied by mechanical test, wide‐angle X‐ray diffraction, differential scanning calorimetry, and scanning electron microscopy. A distinct complementary effect of GFs and β‐nucleating agent TMB‐5 on mechanical properties and crystallization behavior of PP was observed. Results showed that addition of 20 wt % GFs and 0.1 wt % TMB‐5 into PP matrix with the two‐step process could lead to significant increase to its mechanical properties: specifically 64.8% improvement in tensile strength, 107.1% enhancement in flexural modulus, and 167.7% increasement in notched impact strength compared to that of neat PP. Furthermore, with the combination of TMB‐5 and GFs, not only led to promoted interfacial adhesion, but also significantly improved overall comprehensive mechanical properties. The complementary process provided an alternative approach for the development of PP with balanced toughnesss and stiffness. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45768.  相似文献   

7.
Electrospun nanocomposites of poly(ε‐caprolactone) (PCL) incorporated with PCL‐grafted cellulose nanocrystals (PCL‐g‐CNC) were produced. PCL chains were grafted from cellulose nanocrystals (CNC) surface by ring‐opening polymerization. Grafting was confirmed by infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA). The resulting PCL‐g‐CNC were then incorporated into a PCL matrix at various loadings. Homogeneous nanofibers with average diameter decreasing with the addition of PCL‐g‐CNC were observed by scanning electron microscopy (SEM). PCL‐g‐CNC domains incorporated into the PCL matrix were visualized by transmission electron microscopy (TEM). Thermal and mechanical properties of the mats were analyzed by differential scanning calorimetry (DSC), TGA and dynamic mechanical analysis (DMA). The addition of PCL‐g‐CNC into the PCL matrix caused changes in the thermal behavior and crystallinity of the electrospun fibers. Significant improvements in Young's modulus and in strain at break with increasing PCL‐g‐CNC loadings were found. These results highlighted the great potential of cellulose nanocrystals as a reinforcement phase in electrospun PCL mats, which can be used as biomedical materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43445.  相似文献   

8.
In the present study, an attempt has been made to improve cell supportive property of chitosan/nano beta tri‐calcium phosphate (β‐TCP) composite scaffolds by modification of scaffold surface with fibrin using ethyl‐3‐(3‐dimethylaminopropyl) carbodimide (EDC) as crosslinking agent. The developed fibrin conjugated chitosan/nano β‐TCP composite scaffolds possess desired pore size and porosity in the range of 45–151 µm and 81.4 ± 4.1%, respectively. No significant change in compressive strength of scaffolds was observed before and after fibrin conjugation. The calculated compressive strength of fibrin conjugated and non‐conjugated chitosan/nano β‐TCP scaffolds are 2.71 ± 0.14 MPa and 2.67 ± 0.11 MPa, respectively. Results of cell culture study have further shown an enhanced cell attachment, cell number, proliferation, differentiation, and mineralization on fibrin conjugated chitosan/nano β‐TCP scaffold. The uniform cell distribution over the scaffold surface and cell infiltration into the scaffold pores were assessed by confocal laser scanning microscopy. Furthermore, higher expression of osteogenic specific genes such as bone sialo protein, osteonectin, alkaline phosphatase, and osteocalcin (OC) on fibrin conjugated scaffolds was observed when compared to scaffolds without fibrin. Altogether, results indicate the potentiality of developed fibrin conjugated composite scaffolds for bone tissue engineering applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41534.  相似文献   

9.
Surface‐modified poly(d , l ‐lactide)/polycaprolactone/β‐tricalcium phosphate complex scaffold was fabricated in this study and we hypothesized that pliable and mechanical strong scaffold would be achieved by regulation of ternary compositions; while superficial modification strategy conduced to preserve and controlled‐release of bioactive growth factors. Properties of the composite scaffolds were systematically investigated, including mechanical properties, surface morphology, porosity, wettability, and releasing behavior. Moreover, the representative cytokine, recombinant human bone morphogenetic protein‐2 (rhBMP‐2), was loaded and implanted into muscular pouch of mouse to assess bone formation in vivo. Improved osteogenesis was achieved ascribed to both amplified β‐tricalcium phosphate (β‐TCP) content and retarded initial burst release. Particularly, scaffold doped with hydroxypropyl methylcellulose (HPMC) displayed optimal osteogenic capability. The results indicated that the PDLLA/PCL/β‐TCP complex scaffold along with HPMC‐coating and rhBMP‐2 loading was a promising candidate for bone regeneration. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40951.  相似文献   

10.
《Polymer Composites》2017,38(11):2402-2410
Tissue engineering combines artificial scaffolds and living cells in order to reconstruct damaged tissues and organs. The biodegradable scaffolds should maintain their mechanical properties during first stages of the regeneration. The aim of this study was to investigate the extent the degradation affects the mechanical stability of novel biodegradable composite scaffolds in relation to their composition. The scaffolds were made using fused deposition modeling. They were composed of ternary composites containing poly(ε‐caprolactone) (PCL), 5 wt% of tricalcium phosphate (TCP) and 5, 15, and 25 wt% of poly(lactide‐co‐glycolide) (PLGA). Scaffolds made of pristine PCL and binary composite PCL–TCP were tested as reference samples. The degradation experiment was carried out in simulated body fluid at 37°C for 12 weeks. Mechanical tests were carried out in a mechanical tester. Strain was measured using digital image correlation and crossbar displacement. Chemical composition had a significant effect on initial mechanical properties and their changes during degradation. The initial apparent Young's modulus of ternary composite scaffolds was two times higher than that of PCL–TCP. Higher PLGA concentration yielded faster decrease of the mechanical properties. At the end of the experiment, there were no significant differences of the modulus among all tested materials although degradation of the ternary composite scaffolds was significantly advanced. POLYM. COMPOS., 38:2402–2410, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
Poly(ε‐caprolactone) (PCL) has been widely investigated for tissue engineering applications because of its good biocompatibility, biodegradability, and mechanical properties; however hydrophobic nature of PCL has been a colossal obstacle toward achieving scaffolds which offer satisfactory cell attachment and proliferation. To produce highly hydrophilic electrospun fibers, PCL was blended with pluronic P123 (P123) and the resulted electrospun scaffolds physiochemical characteristics such as fiber morphology, thermal behavior, crystalline structure, mechanical properties, and wettability were investigated. Moreover molecular dynamic (MD) simulation was assigned to evaluate the blended and neat PCL/water interactions. Presence of P123 at the surface of electrospun blended fibers was detected using ATR‐FTIR analysis. P123 effectiveness in improving the hydrophilicity of the scaffolds was demonstrated by water contact angel which experienced a sharp decrease from 132° corresponding to the neat PCL to almost 0° for all blended samples. Also a steady increase in water uptake ratio was observed for blended fibers as P123 content increased. The 90/10 blend ratio had the maximum tensile strength, elongation at break and crystallinity percentage. Therefore 90/10 blend ratio of PCL/P123 can balance the mechanical properties and bulk hydrophilicity of the resulted electrospun scaffold and would be a promising candidate for tissue engineering application. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43345.  相似文献   

12.
Composite Scaffolds have received much attention in the tissue engineering, and how to choose the materials has become the research focus in this field. Supercritical CO2 (ScCO2)‐induced phase separation process was employed to prepare porous poly‐L ‐lactide (PLLA) composite scaffolds. An experiment system was set up for the purpose of investigating the effects of such parameters as the mass ratios of PLLA to polyethylene glycol (PEG) and PLLA to β‐TCP on porosity and compressive strength of composite scaffolds. The obtained composite scaffolds were characterized in many ways. Scanning electron microscopy was used to examine the morphology and pore size; porosity was analyzed by pycnometer; and the compressive strength was recorded by texture analyzer. The results indicated that the porosity was increased with the addition of PEG, and the highest porosity of PLLA/PEG composite scaffolds was 92% with the mass ratio of PLLA to PEG of 1:0.05; the compressive strength was increased with the addition of β‐TCP, and the highest compressive strength of PLLA/β‐TCP composite scaffolds was 1.76 MPa with the mass ratio of PLLA to β‐TCP of 1:0.1. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
Polymer‐cyclodextrin (CD) composite nanofibers, by virtue of the hollow cavities and abundant hydroxyl groups present in CDs, have tremendous potential in a variety of biomedical applications. However, in most cases, especially in aliphatic polyesters, polymer chains thread readily into CD cavities, therefore its potential has not yet been fully realized. Herein, we report the formation of poly(ε‐caprolactone) (PCL)/β‐CD functional nanofibers by electrospinning their mixture from chloroform/N,N‐dimethylformamide (60 : 40). The fiber diameters of the neat PCL and β‐CD functionalized fibers were measured from the images obtained from a scanning electron microscope and were found to be about 500 nm. The efficiency of wound odor absorbance by these composite fibers was studied using a simulated wound odor solution, consisting of butyric and propionic acids in ethanol. Immersion tests indicated that even under less than ideal test conditions, the nanofibers containing β‐CDs were very efficient in masking the odor. The odor masking capability of the β‐CD functionalized PCL nanofibers were further confirmed by thermogravimetric analyses and GC observations, with the former method showing unique degradation patterns. The PCL/β‐CD nanocomposites, by virtue of having their β‐CD cavities free and unthreaded by PCL, could potentially be an ideal substrate for removing wound odors through formation of inclusion compounds with odorants, while providing an ideal environment for the wound to heal. These results suggest tailoring polymer‐CD nanostructures for specific applications in wound odor absorbance, surface grafting of chemical moieties, and vehicles for drug delivery, as examples. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42782.  相似文献   

14.
In this study, amphiphilic poly(ε‐caprolactone)–pluronic–poly(ε‐caprolactone) (PCL–pluronic–PCL, PCFC) copolymers were synthesized by ring‐opening copolymerization and then reacted with isophorone diisocyanate to form polyurethane (PU) copolymers. The molecular weight of the PU copolymers was measured by gel permeation chromatography, and the chemical structure was analyzed by 1H‐nuclear magnetic resonance and Fourier transform infrared spectra. Then, the PU copolymers were processed into fibrous scaffolds by the electrospinning technology. The morphology, surface wettability, mechanical strength, and cytotoxicity of the obtained PU fibrous mats were investigated by scanning electron microscopy, water contact angle analysis, tensile test, and MTT analysis. The results show that the molecular weights of PCFC and PU copolymers significantly affected the physicochemical properties of electrospun PU nanofibers. Moreover, their good in vitro biocompatibility showed that the as‐prepared PU nanofibers have great potential for applications in tissue engineering. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43643.  相似文献   

15.
A series of nanocomposite scaffolds of poly(?‐caprolactone) (PCL) and starch with a range of porosity from 50 to 90% were fabricated with a solvent‐casting/salt‐leaching technique, and their physical and mechanical properties were investigated. X‐ray diffraction patterns and Fourier transform infrared spectra confirmed the presence of the characteristic peaks of PCL in the fabricated scaffolds. Microstructure studies of the scaffolds revealed a uniform pore morphology and structure in all of the samples. The experimental measurements showed that the average contact angle of the PCL/starch composite was 88.05 ± 1.77°. All of the samples exhibited compressive stress/strain curves similar to those of polymeric foams. The samples with 50, 60, 70, and 80 wt % salt showed compressive‐load‐resisting capabilities in the range of human cancellous bone. With increasing porosity, a significant decrease in the mechanical properties of the scaffolds was observed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43523.  相似文献   

16.
High density polyethylene/tricalcium phosphate/ultra high molecular weight polyethylene (TCP/HDPE/UHMWPE) Nanocomposite as an orthopedic biomaterial (with better properties toward TCP/HDPE composite) was obtained. To evaluate the capability of this nanocomposite as a material for bone tissue replacement, mechanical and biological assessments were performed. In this study, nanosize β‐TCP powders with average grain size of 100 nm were synthesized by chemical precipitation method and characterized by means of X‐ray diffraction (XRD), Fourier‐transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). To evaluate the mechanical properties of this biomaterial, tensile properties were obtained for the material. Results showed that by increasing the weight percentage of β‐TCP, the elastic modulus increases, elongation at yield decreases and with no significant change in tensile strength. SEM micrographs of cryogenic fracture surface of samples indicated that distribution of nano powders in matrix is homogeneous. In vitro biological evaluations on the samples were done by performing cytotoxicity (MTT assay), alkaline phosphatase enzyme, and cell attachment tests. In all of the tests, osteoblast cells were used. Results of biological tests showed that the samples are biocompatible and they have no toxicity. Also, SEM observations demonstrated that the cells can attach to surface of nanocomposite samples, which reveals osteoconductivity of the surface. POLYM. COMPOS., 31:1745–1753, 2010. © 2010 Society of Plastics Engineers.  相似文献   

17.
Atactic poly(3‐hydroxybutyrate) (a‐PHB) and block copolymers of poly(ethylene glycol) (PEG) with poly(ε‐caprolactone) (PCL‐b‐PEG) were synthesized through anionic polymerization and coordination polymerization, respectively. As demonstrated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) measurements, both chemosynthesized a‐PHB and biosynthesized isotactic PHB (i‐PHB) are miscible with the PEG segment phase of PCL‐b‐PEGs. However, there is no evidence showing miscibility between both PHBs and the PCL segment phase of the copolymer even though PCL has been block‐copolymerized with PEG. Based on these results, PCL‐b‐PEG was added, as a compatibilizer, to both the PCL/a‐PHB blends and the PCL i‐PHB blends. The blend films were obtained through the evaporation of chloroform solutions of mixed components. Excitingly, the improvement in mechanical properties of PCL/PHB blends was achieved as anticipated initially upon the addition of PCL‐b‐PEG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2600–2608, 2001  相似文献   

18.
The apparent inability of a single biomaterial to meet all the requirements for tissue engineering scaffolds has led to continual research in novel engineered biomaterials. One method to provide new materials and fine‐tune their properties is via mixing materials. In this study, a biodegradable powder blend of poly(ε‐caprolactone) (PCL), polyglycolide (PGA), and poly(ethylene oxide) (PEO) was prepared and three‐dimensional interconnected porous PCL/PGA scaffolds were fabricated by combining cryomilling and compression molding/polymer leaching techniques. The resultant porous scaffolds exhibited co‐continuous morphologies with ~50% porosity. Mean pore sizes of 24 and 56 μm were achieved by varying milling time. The scaffolds displayed high mechanical properties and water uptake, in addition to a remarkably fast degradation rate. The results demonstrate the potential of this fabrication approach to obtain PCL/PGA blend scaffolds with interconnected porosity. In general, these results provide significant insight into an approach that will lead to the development of new composites and blends in scaffold manufacturing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42471.  相似文献   

19.
In this study, the synthesis, characterization, and properties of a novel biodegradable polymer with improved hemocompatibility were introduced. It was synthesized by end‐capping poly‐ε‐caprolactone (PCL) with phosphorylcholine (PC) groups. The polyester backbone provided the mechanical stability and biodegradability, while the PC‐end groups improved its hemocompatibility. The obtained polymer was characterized using 1H NMR, 31P NMR, FTIR, and GPC, its crystallization behavior was studied by DSC. Compared with original PCL, the resulting polymer (PC‐PCL) showed a lower crystallization capability and a faster degradation rate in PBS. The degradation rate of the polymer blends of PCL/PC‐PCL increased with increasing PC‐PCL content. The results of water contact angle measurements revealed a more hydrophilic surface property of PC‐PCL than neat PCL. The hemocompatibility of PC‐PCL was estimated using rabbit platelet‐rich plasma, a better resistance to platelet adhesion and activation was observed. During the human blood plasma contacting process, PC‐PCL showed a prolonged activated partial thromboplastin time over neat PCL. Material–cell interaction was evaluated with human umbilical vein endothelial cell, the result indicated that PC‐PCL may to some extent have an antihyperplasia property, compared with neat PCL. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 989–997, 2007  相似文献   

20.
Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β‐tricalcium phosphate (β‐TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high‐temperature ceramics. In this work self‐setting Biphasic Calcium Phosphate Cements (BCPCs) with different HA/β‐TCP ratios were obtained from self‐setting α‐TCP/β‐TCP pastes. The strategy used allowed synthesizing BCPCs with modulated composition, compressive strength, and specific surface area. Due to its higher solubility, α‐TCP was fully hydrolyzed to a calcium‐deficient HA (CDHA), whereas β‐TCP remained unreacted and completely embedded in the CDHA matrix. Increasing amounts of the non‐reacting β‐TCP phase resulted in a linear decrease of the compressive strength, in association to the decreasing amount of precipitated HA crystals, which are responsible for the mechanical consolidation of apatitic cements. Ca2+ release and degradation in acidic medium was similar in all the BCPCs within the timeframe studied, although differences might be expected in longer term studies once β‐TCP, the more soluble phase was exposed to the surrounding media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号