首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用不同的测试方法,测定了气相生长炭纤维(VGCF) 石墨化前后的密度、元素组成、拉伸强度和模量等基本物理性能及以它们增强的环氧树脂基复合材料的力学性能。结果表明, 石墨化后VGCF 的综合物理性能比未石墨化的VGCF 有明显的提高。  相似文献   

2.
催化法制备气相生长炭纤维机理的探讨   总被引:3,自引:0,他引:3  
张蓉晖  沈祖洪 《炭素》1996,(2):18-21
综合了近年来气相生长炭纤维机理方面研究的一些结果,结合钢铁材料研究中关于其中碳组分存在形式变化的结论对气相生长炭纤维催化生长过程进行讨论,并分别讨论了基体法及流动催化剂法VGCF的生长。  相似文献   

3.
综述了几种不同的碳源,如低碳烃(甲烷、丙烯、乙炔和苯等)、脱油沥青、煤沥青,采用化学气相沉积(CVD)法,按不同转化过程制备出气相生长炭纤维(VGCFs)的研究现状.主要研究了以煤沥青为碳源、二茂铁为催化剂,借助CVD法制备气相生长炭纤维.经场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)、X-射线衍射(XRD)及拉曼散射(Raman)分析,结果表明:产物主要为高纯度的VGCFs,直径分布均匀,外径大约为100 nm,长度数微米,并初步探讨了煤沥青制备气相生长炭纤维的生长机理.  相似文献   

4.
本工作采用熔融混料热模压成型工艺制备短切炭纤维增强热塑性树脂SCFR-TP—PA1010复合材料。着重研究了复合材料的各种力学性能、热性能及CF与基体间的界面状态、CF含量、复合工艺对材料性能的影响以及CF经表面处理后其性能及复合材料层间剪切强度ILSS的变化。并对复合材料剪切断裂机制进行了初步探讨。我们发现复合材料中CF的增强作用明显,CF含量以20~30%(重量)为最佳。CF经氧化处理后,强度和模量均有所降低,但纤维与基体的粘结作用增强。电聚合涂层处理则随单体——溶剂——电解质体系的不同而有不同结果。复合材料浸水后ILSS降低,虽经干燥处理亦不能完全恢复。剪切断口电镜分析发现剪切断裂有三种方式,其主要机制是微裂纹的扩展导致界面脱胶和基体开裂。  相似文献   

5.
气相生长炭纤维形态及微观结构的研究   总被引:1,自引:0,他引:1  
用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射型电子显微镜(HRTEM)、X射线能谱分析(XES)研究了VGCF(气相生长炭纤维)的形态和微观结构特征,分析了制备工艺参数和产物结构的内在联系,发现一些新的现象并给出解释,为VGCF生长机理的确立提供了理论和实验依据.  相似文献   

6.
炭/炭复合材料研究新进展   总被引:11,自引:1,他引:10  
1前言c/C复合材料是一种用炭纤维增强炭基体的复合材料,它们是目前世界上高技术领域重点研究和开发的一种新型材料,其密度约为2.08/cm‘,为镍基高温合金的1/4,陶瓷材料的1/2。这种材料的热膨胀系数低,抗热冲击性能好,吸振性好,疲劳抗力和蠕变抗力高。更重要的是这种材料随着温度的升高(可达2200C)其强度不降低,甚至比室温时还高[‘],这是其它材料无法比拟的。作为以抗烧蚀为主要目的的短时使用已成功地应用于航天工业中,如火箭尾喷管、导弹鼻锥等*’、飞机刹车盘等主要发挥的是这种材料的耐磨性D‘人0作为高温长时使…  相似文献   

7.
潘虎 《炭素技术》1992,(1):7-12
本文旨在通过对复合材料的结构和宏观力学性质的分析,并采用电测法对炭纤维以不同工艺参数缠绕于石墨圆筒外壁面后的增强效果进行了比较讨论。结果表明,受内压作用时,经缠绕处理的圆筒比光筒的交形小,亦即强度提高了,文中还就缠绕工艺参数对试验结果的影响作了比较。  相似文献   

8.
本文论述了用化学气相渗法备炭纤维增强C-SiC梯度基复合材料,通过改变原料气体成分配比控制基体微观结构的变化,给出各工艺参数选择的依据及控制的要点,分析了材料微观结构。  相似文献   

9.
李工 《炭素》2000,(1):15-17
利用溶胶=凝胶方法在炭纤维表面涂覆了一层Al2O3。发现该涂层厚度适当时,不仅对炭纤维有化学保护作用,而且会使炭纤维与其体之间有适当结合。从而使复合材料力学性能得到提高。室温抗折强度和断裂韧性分别达到1120MPa和19.30MPam^1/2。用XRD和SEM测试手段解释了这一结果。  相似文献   

10.
利用湿法混炼工艺制备出炭纤维 /橡胶复合材料,研究了炭纤维对橡胶性能的影响。结果表明:炭纤维的加入能提高橡胶的硬度、耐热性及耐油性,但橡胶的扯断强度有所下降。  相似文献   

11.
气相生长法在炭纤维上生长二次纳米炭纤维   总被引:6,自引:1,他引:5  
范月英  成会明 《炭素》1997,(4):7-13
以苯为炭源,以铁盐溶液为催化剂,在PAN基炭纤维上气相生长二次钠米炭纤维,可以增加炭纤维增强复合材料的层间剪切力。催化剂浓度和苯的流量不仅对二次纤维的收量有影响,而且还影响着母体炭纤维本身的特性,特别是催化剂溶液的浓度影响着二次纤维生长的均匀性,实验证明,二次纤维均匀分布在母体炭纤维上的最佳条件为:Fe(NO3)3溶液的浓度的0.01wt%,苯的流量为25ml/min。二次纤维的生长是按溶解-流体  相似文献   

12.
石峰  罗瑞盈 《炭素技术》2011,30(3):35-39
炭纤维增强复合材料的固有频率和阻尼特性受复合材料的组织结构和使用环境的影响。针对炭纤维增强树脂基和炭基复合材料的固有频率和阻尼特性的研究进展进行了系统论述,详细介绍了纤维、基体、纤维/基体的界面及温度对炭纤维增强树脂基和炭基复合材料固有频率和阻尼特性的影响。  相似文献   

13.
介绍了炭纤维的表面处理,炭纤维增强铜基复合材料的制备工艺与性能的研究进展.三元层状碳化物Ti3SiC2兼具金属和陶瓷的优良性能,更有意义的是它具有很好的自润滑性能和比传统的固体润滑剂石墨、二硫化钼更低的摩擦系数.将Ti3SiC2弥散强化Cu与炭纤维复合强化Cu结合,制备出的复合材料,可望有效提高其自润滑性能,被认为在许多领域有着广泛的应用前景.  相似文献   

14.
炭纤维表面处理对短炭纤维增强炭基复合材料强度的影响   总被引:4,自引:0,他引:4  
为了增强炭纤维的表面活性,提高炭纤维与基体炭的结合强度,用浓硝酸对炭纤维进行了表面氧化处理。考察了处理时间和处理温度对短炭纤维增强炭基复合材料(SCFRC)力学性能的影响;用扫描电子显微镜(SEM)对SCFRC的弯曲断面进行了观察。结果表明:对炭纤维进行表面处理可以提高其与基体炭的结合强度,炭纤维与基体炭的结合强度以及SCFRC的抗弯强度均随着炭纤维氧化处理时间的增加和处理温度的升高而增大  相似文献   

15.
C型炭纤维阳极氧化处理及其增强ABS复合材料的研究   总被引:1,自引:0,他引:1  
以NH4NO3为电解质,对C型通用级沥青基炭纤维在不同条件下进行阳极氧化表面处理,并通过SEM、力学性能测试等方法考察了纤维及其复合材料的性能,发现经氧化处理后,炭纤维表面粗糙度和含氧官能团如C-O、C=O、COOH等数目明显增大,CF/ABS复合材料的界面粘结性得到有效地改善;复合材料的拉伸强度、弯曲强度及模量有所提高,断裂形式由纤维拔出转变为纤维断裂。  相似文献   

16.
采用加压焙烧工艺制备了短纤维增强C/C复合材料,研究了基体材料配比及纤维含量对其力学性能的影响,结果发现,基体材料中粘接剂沥青的最佳含量为30w%,当炭纤维含量小于8.3vol%时,随着炭纤维含量的增加,复合材料的抗折强度逐渐升高,之后,随着炭纤维的体积含量的增加,复合材料的抗折强度有所下降。  相似文献   

17.
18.
粘结剂含量对短炭纤维增强炭基复合材料性能的影响   总被引:2,自引:1,他引:2  
本文以聚丙烯睛基炭纤维为增强材料,以石油焦为基体,配入不同含量的煤焦油沥青作为粘结剂,用热压法进行成型、炭化、石黑化,获得了短炭纤维增强炭基复合材料(SCFRC)对所得炭/炭复合材料进行了体积密度、显气孔率、抗弯强度、抗压强度的测定,并对炭/炭复合材料的断面进行了扫描电镜测试。研究表明,随着粘结剂量的增加,所得炭/炭复合材料的体积密度减小,显气孔率增大,抗弯强度和抗压强度增大。  相似文献   

19.
炭纤维增强水泥复合材料的制备及力学性能研究   总被引:1,自引:1,他引:0  
 本文采用羧甲基纤维素钠(Sodium Carbonxymethyl Cellulose, CMC)与硅微粉(Fine Silica Fumes, SF) 作为复合分散剂对PAN基炭纤维进行协同分散来制备炭纤维增强水泥复合材料(Carbon Fiber Reinforced Cement Composites, CFRCC),研究了炭纤维用量、分散剂配比及水灰比对其强度的影响。试验结果表明,此法对纤维具 有良好的分散效果。经过对各个掺量进行优选发现,在炭纤维为水泥掺量的1%,CMC和SF的分别为0.05%和15%,水 灰比为0.30~0.32时效果最好,所得CFRCC 7d(7天)的抗折和抗压强度分别提高了31.22%和41.25%。  相似文献   

20.
将炭纤维的高模量与橡胶的高弹性有机地结合在一起,制成炭纤维增强的橡胶复合材料,不仅可以改善橡胶的物理机械性能,同时赋予橡胶耐磨、导电、导热等新功能。利用这些功能可以制备高性能的密封材料、阻尼抗震材料、耐磨材料、抗静电材料等。文中简述了炭纤维/橡胶复合材料在坦克装甲车辆上的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号