首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
S 5627 is a synthetic analogue of chlorogenic acid. S 5627 is a potent linear competitive inhibitor of glucose 6-phosphate (Glc-6-P) hydrolysis by intact microsomes (Ki = 41 nM) but is without effect on the enzyme in detergent- or NH4OH-disrupted microsomes. 3H-S 5627 was synthesized and used as a ligand in binding studies directed at characterizing T1, the Glc-6-P transporter. Binding was evaluated using Ca2+-aggregated microsomes, which can be sedimented at low g forces. Aside from a modest reduction in K values for both substrate and S 5627, Ca2+ aggregation had no effect on glucose-6-phosphatase (Glc-6-Pase). Scatchard plots of binding data are readily fit to a simple "two-site" model, with Kd = 21 nM for the high affinity site and Kd = 2 microM for the low affinity site. Binding to the high affinity site was competitively blocked by Glc-6-P (Ki = 9 microM), whereas binding was unaffected by mannose-6-phosphate, Pi, and PPi and only modestly depressed by 2-deoxy-D-glucose 6-phosphate, a poor substrate for Glc-6-Pase in intact microsomes. Thus the high affinity 3H-S 5627 binding site fits the criteria for T1. Permeabilization of the membrane with 0.3% (3-[(chloramidopropyl)-dimethylammonio]-1-propanesulfonate) activated Glc-6-Pase and broadened its substrate specificity, but it did not significantly alter the binding of 3H-S 5627 to the high affinity sites or the ability of Glc-6-P to block binding. These data demonstrate unequivocally that two independent Glc-6-P binding sites are involved in the hydrolysis of Glc-6-P by intact microsomes. The present findings are the strongest and most direct evidence to date against the notion that the substrate specificity and the intrinsic activity of Glc-6-Pase in native membranes are determined by specific conformational constraints imposed on the enzyme protein. These data constitute compelling evidence for the role of T1 in Glc-6-Pase activity.  相似文献   

2.
Crystal structures of human hexokinase I reveal identical binding sites for phosphate and the 6-phosphoryl group of glucose 6-phosphate in proximity to Gly87, Ser88, Thr232, and Ser415, a binding site for the pyranose moiety of glucose 6-phosphate in proximity to Asp84, Asp413, and Ser449, and a single salt link involving Arg801 between the N- and C-terminal halves. Purified wild-type and mutant enzymes (Asp84 --> Ala, Gly87 --> Tyr, Ser88 --> Ala, Thr232 --> Ala, Asp413 --> Ala, Ser415 --> Ala, Ser449 --> Ala, and Arg801 --> Ala) were studied by kinetics and circular dichroism spectroscopy. All eight mutant hexokinases have kcat and Km values for substrates similar to those of wild-type hexokinase I. Inhibition of wild-type enzyme by 1,5-anhydroglucitol 6-phosphate is consistent with a high affinity binding site (Ki = 50 microM) and a second, low affinity binding site (Kii = 0.7 mM). The mutations of Asp84, Gly87, and Thr232 listed above eliminate inhibition because of the low affinity site, but none of the eight mutations influence Ki of the high affinity site. Relief of 1,5-anhydroglucitol 6-phosphate inhibition by phosphate for Asp84 --> Ala, Ser88 --> Ala, Ser415 --> Ala, Ser449 --> Ala and Arg801 --> Ala mutant enzymes is substantially less than that of wild-type hexokinase and completely absent in the Gly87 --> Tyr and Thr232 --> Ala mutants. The results support several conclusions. (i) The phosphate regulatory site is at the N-terminal domain as identified in crystal structures. (ii) The glucose 6-phosphate binding site at the N-terminal domain is a low affinity site and not the high affinity site associated with potent product inhibition. (iii) Arg801 participates in the regulatory mechanism of hexokinase I.  相似文献   

3.
Liver microsomal glucose-6-phosphatase (Glc-6-Pase) is a multicomponent system involving both substrate and product carriers and a catalytic subunit. We have investigated the inhibitory effect of N-ethylmaleimide (NEM), a rather specific sulfhydryl reagent, on rat liver Glc-6-Pase activity. Three thiol groups are important for Glc-6-Pase system activity. Two of them are located in the glucose-6-phosphate (Glc-6-P) translocase, and one is located in the catalytic subunit. The other transporters (phosphate and glucose) are not affected by NEM treatment. The NEM alkylation of the catalytic subunit sulfhydryl residue is prevented by preincubating the disrupted microsomes with saturating concentrations of substrate or product. This suggests either that the modified cysteine is located in the protein active site or that substrate binding hides the thiol group via a conformational change in the enzyme structure. Two other thiols important for the Glc-6-Pase system activity are located in the Glc-6-P translocase and are more reactive than the one located in the catalytic subunit. The study of the NEM inhibition of the translocase has provided evidence of the existence of two distinct areas in the protein that can behave independently, with conformational changes occurring during Glc-6-P binding to the transporter. The recent cloning of a human putative Glc-6-P carrier exhibiting homologies with bacterial phosphoester transporters, such as Escherichia coli UhpT (a Glc-6-P translocase), is compatible with the fact that two cysteine residues are important for the bacterial Glc-6-P transport.  相似文献   

4.
The interaction of ATP with the active site of hexokinase is unknown since the crystal structure of the hexokinase-ATP complex is unavailable. It was found that the ATP binding site of brain hexokinase is homologous to that of actin, heat shock protein hsc70, and glycerol kinase. On the basis of these similarities, the ATP molecule was positioned in the catalytic domain of human brain hexokinase, which was modeled from the X-ray structure of yeast hexokinase. Site-directed mutagenesis was performed to test the function of residues presumably involved in interaction with the tripolyphosphoryl moiety of ATP. Asp532, which is though to be involved in binding the Mg2+ ion of the MgATP2- complex, was mutated to Lys and Glu. The kcat values decreased 1000- and 200-fold, respectively, for the two mutants. Another residue, Thr680 was proposed to interact with the gamma-phosphoryl group of ATP through hydrogen bonds and was mutated to Val and Ser. The kcat value of the Thr680Val mutant decreased 2000-fold, whereas the kcat value of the Thr680Ser decreased only 2.5-fold, implying the importance of the hydroxyl group. The Km and dissociation constant values for either ATP or glucose of all the above mutants showed little or no change relative to the wild-type enzyme. The Ki values for the glucose 6-phosphate analogue 1,5-anhydroglucitol 6-phosphate, were the same as that of the wild-type enzyme, and the inhibition was reversed by inorganic phosphate (Pi) for all four mutants. The circular dichroism spectra of the mutants were the same as that of the wild-type enzyme. The results from the site-directed mutagenesis demonstrate that the presumed interactions of investigated residues with ATP are important for the stabilization of the transition state.  相似文献   

5.
Hexokinase I, the pacemaker of glycolysis in brain tissue and red blood cells, is comprised of two similar domains fused into a single polypeptide chain. The C-terminal half of hexokinase I is catalytically active, whereas the N-terminal half is necessary for the relief of product inhibition by phosphate. A crystalline complex of recombinant human hexokinase I with glucose and phosphate (2.8 A resolution) reveals a single binding site for phosphate and glucose at the N-terminal half of the enzyme. Glucose and phosphate stabilize the N-terminal half in a closed conformation. Unexpectedly, glucose binds weakly to the C-terminal half of the enzyme and does not by itself stabilize a closed conformation. Evidently a stable, closed C-terminal half requires either ATP or glucose 6-phosphate along with glucose. The crystal structure here, in conjunction with other studies in crystallography and directed mutation, puts the phosphate regulatory site at the N-terminal half, the site of potent product inhibition at the C-terminal half, and a secondary site for the weak interaction of glucose 6-phosphate at the N-terminal half of the enzyme. The relevance of crystal structures of hexokinase I to the properties of monomeric hexokinase I and oligomers of hexokinase I bound to the surface of mitochondria is discussed.  相似文献   

6.
Fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase (Fru-6-P, 2-kinase/Fru-2,6-Pase) is a bifunctional enzyme, catalyzing the interconversion of beta-D-fructose- 6-phosphate (Fru-6-P) and fructose-2,6-bisphosphate (Fru-2,6-P2) at distinct active sites. A mutant rat testis isozyme with an alanine replacement for the catalytic histidine (H256A) in the Fru-2,6-Pase domain retains 17% of the wild type activity (Mizuguchi, H., Cook, P. F., Tai, C-H., Hasemann, C. A., and Uyeda, K. (1998) J. Biol. Chem. 274, 2166-2175). We have solved the crystal structure of H256A to a resolution of 2. 4 A by molecular replacement. Clear electron density for Fru-6-P is found at the Fru-2,6-Pase active site, revealing the important interactions in substrate/product binding. A superposition of the H256A structure with the RT2K-Wo structure reveals no significant reorganization of the active site resulting from the binding of Fru-6-P or the H256A mutation. Using this superposition, we have built a view of the Fru-2,6-P2-bound enzyme and identify the residues responsible for catalysis. This analysis yields distinct catalytic mechanisms for the wild type and mutant proteins. The wild type mechanism would lead to an inefficient transfer of a proton to the leaving group Fru-6-P, which is consistent with a view of this event being rate-limiting, explaining the extremely slow turnover (0. 032 s-1) of the Fru-2,6-Pase in all Fru-6-P,2-kinase/Fru-2,6-Pase isozymes.  相似文献   

7.
To investigate the role in catalysis and/or substrate binding of the Walker motif residues of rat testis fructose 6-phosphate, 2-kinase:fructose-2,6-bisphosphatase (Fru 6-P,2-kinase:Fru-2,6-Pase), we have constructed and characterized mutant enzymes of Asp-128, Thr-52, Asn-73, Thr-130, and Tyr-197. Replacement of Asp-128 by Ala, Asn, and Ser resulted in a small decrease in Vmax and a significant increase in Km values for both substrates. These mutants exhibited similar pH activity profiles as that of the wild type enzyme. Mutation of Thr-52 to Ala resulted in an enzyme with an infinitely high Km for both substrates and an 800-fold decreased Vmax. Substitution of Asn-73 with Ala or Asp caused a 100- and 600-fold increase, respectively in KFru 6-P with only a small increase in KATP and small changes in Vmax. Mutation of Thr-130 caused small changes in the kinetic properties. Replacement of Tyr-197 with Ser resulted in an enzyme with severely decreased binding of Fru 6-P with 3-fold decreased Vmax. A fluorescent analog of ATP, 2'(3')-O-(N-methylanthraniloyl)ATP (mant-ATP) served as a substrate with Km = 0.64 microM, and Vmax = 25 milliunits/mg and was a competitive inhibitor with respect to ATP. When mant-ATP bound to the enzyme, fluorescence intensity at 440 nm increased. mant-ATP binding of the wild type and the mutant enzymes were compared using the fluorometric method. The Kd values of the T52A and D128N enzymes were infinitely high and could not be measured, while those of the other mutant enzymes increased slightly. These results provide evidence that those amino acids are involved in substrate binding, and they are consistent with the crystallographic data. The results also suggest that Asp-128 does not serve as a nucleophile in catalysis, and since there are no other potential nucleophiles in the active site, we hypothesize that the Fru 6-P,2-kinase reaction is mediated via a transition state stabilization mechanism.  相似文献   

8.
The two mannose 6-phosphate (Man-6-P) binding sites of the insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/MPR) have been localized to domains 1-3 and 7-9, and studies have shown that Arg435 in domain 3 and Arg 1334 in domain 9 are essential for Man-6-P binding. To determine whether the IGF-II/MPR containing a single Man-6-P binding site is functional, clonal mouse L cell lines stably transfected with either mutant bovine IGF-II/MPR cDNA, containing substitutions at position 435 and/or 1334, or the wild type receptor cDNA were assayed for their ability to sort lysosomal enzymes to the lysosome. Mutant receptors containing a single Man-6-P binding site were approximately 50% less efficient than the wild type receptor in the overall targeting of lysosomal enzymes to the lysosome. Mutant receptors containing a substitution at Arg1334 (Dom9(Ala)), in contrast to those containing a substitution at Arg435 (Dom3(Ala)), were unable to target cathepsin D and beta-hexosaminidase to the lysosome. Equilibrium binding assays using 125I-labeled beta-glucuronidase demonstrated that Dom3(Ala) and Dom9(Ala) had a Kd of 2.0 and 4.3 nM, respectively. In addition, Dom3(Ala), unlike Dom9(Ala), was unable to completely dissociate from ligand under acidic pH conditions. These data indicate that the two Man-6-P binding sites of the IGF-II/MPR are not functionally equivalent.  相似文献   

9.
The putative calmodulin binding domain of non-erythroid protein 4.1, previously suggested by Kelly et al. [Kelly, G. M., Zelus, B. D. & Moon, R. T. (1991) J. Biol. Chem. 266, 12469-12473] has been synthesized, and its binding to calmodulin has been studied by fluorescence spectroscopy. For this purpose, the peptide has been N-terminally dansylated. The 4.1 peptide Dns-Abu-S76RGLSRLFSSFLKRPKS92, binds calmodulin in a calcium-dependent way with high affinity (Kd = 23 +/- 6 nM). The peptide inhibits bovine-heart phosphodiesterase with an IC50 of 50 nM. Since the sequence of the peptide shows two putative consensus sites of phosphorylation by cAMP-dependent protein kinase or Ca2+-calmodulin protein-kinase II, the interaction of the two mono-phosphorylated peptides (P4.1 Ser(80-P) and P4.1 Ser(84-P)) and the di-phosphorylated peptide (P4.1 Ser(80-P)/Ser(84-P)) with calmodulin has been investigated. A decrease of affinity by a factor 1.5-8 has been observed for the phosphorylated peptides. CD measurements have shown an increase of the content of alpha helices in the peptides when bound to calmodulin.  相似文献   

10.
Human P-glycoprotein (Pgp) confers multidrug resistance to cancer cells by ATP-dependent extrusion of a great many structurally dissimilar hydrophobic compounds. The manner in which Pgp recognizes these different substrates is unknown. The protein shows internal homology between its N- and C-terminal halves, each comprised of six putative transmembrane helices and a consensus ATP binding/utilization site. Photoactive derivatives of certain Pgp substrates specifically label two regions, one on each half of the protein. In this study, using [125I]iodoarylazidoprazosin ([125I]IAAP), a photoactive analog of prazosin, we have demonstrated the presence of two nonidentical drug-interaction sites within Pgp. Taking advantage of a highly susceptible trypsin cleavage site in the linker region of Pgp, we characterized the [125I]IAAP binding to the N- and C-terminal halves. cis(Z)-Flupentixol, a modulator of Pgp function, preferentially increased the affinity of [125I]IAAP for the C-terminal half of the protein (C-site) by reducing the Kd from 20 to 6 nM without changing the labeling or affinity (Kd = 42-46 nM) of the N-terminal half (N-site). Also, the concentration of vinblastine (Pgp substrate) and cyclosporin A (Pgp modulator) required for 50% inhibition of [125I]IAAP binding to the C-site was increased 5- to 6-fold by cis(Z)-flupentixol without any effect on the N-site. In addition, [125I]IAAP binding to the N-site was less susceptible than to C-site to inhibition by vanadate which blocks ATP hydrolysis and drug transport. These data demonstrate the presence of at least two nonidentical substrate interaction sites in Pgp.  相似文献   

11.
A disordered loop (loop 52-72, residues 52-72) in crystal structures of fructose-1,6-bisphosphatase (FBPase) has been implicated in regulatory and catalytic phenomena by studies in directed mutation. A crystal structure of FBPase in a complex with three zinc cations and the products fructose 6-phosphate (F6P) and phosphate (Pi) reveals loop 52-72 for the first time in a well-defined conformation with strong electron density. Loop 52-57 interacts primarily with the active site of its own subunit. Asp68 of the loop hydrogen bonds with Arg276 and a zinc cation located at the putative potassium activation site. Leu56 and Tyr57 of the loop pack against hydrophobic residues from two separate subunits of FBPase. A mechanism of allosteric regulation of catalysis is presented, in which AMP, by binding to its allosteric pocket, displaces loop 52-72 from the active site. Furthermore, the current structure suggests that both the alpha- and beta-anomers of F6P can be substrates in the reverse reaction catalyzed by FBPase. Mechanisms of catalysis are proposed for the reverse reaction in which Asp121 serves as a catalytic base for the alpha-anomer and Glu280 serves as a catalytic base for the beta-anomer.  相似文献   

12.
Glycogen-storage diseases type I (GSD type I) are due to a deficiency in glucose-6-phosphatase, an enzymatic system present in the endoplasmic reticulum that plays a crucial role in blood glucose homeostasis. Unlike GSD type Ia, types Ib and Ic are not due to mutations in the phosphohydrolase gene and are clinically characterized by the presence of associated neutropenia and neutrophil dysfunction. Biochemical evidence indicates the presence of a defect in glucose-6-phosphate (GSD type Ib) or inorganic phosphate (Pi) (GSD type Ic) transport in the microsomes. We have recently cloned a cDNA encoding a putative glucose-6-phosphate translocase. We have now localized the corresponding gene on chromosome 11q23, the region where GSD types Ib and Ic have been mapped. Using SSCP analysis and sequencing, we have screened this gene, for mutations in genomic DNA, from patients from 22 different families who have GSD types Ib and Ic. Of 20 mutations found, 11 result in truncated proteins that are probably nonfunctional. Most other mutations result in substitutions of conserved or semiconserved residues. The two most common mutations (Gly339Cys and 1211-1212 delCT) together constitute approximately 40% of the disease alleles. The fact that the same mutations are found in GSD types Ib and Ic could indicate either that Pi and glucose-6-phosphate are transported in microsomes by the same transporter or that the biochemical assays used to differentiate Pi and glucose-6-phosphate transport defects are not reliable.  相似文献   

13.
We have previously shown that [D-Trp(32)]NPY can competitively antagonize NPY-induced feeding in rats (Balasubramaniam et al. J. Med. Chem. 1994, 37, 811-815). This peptide, however, did not bind to SK-N-MC cells with Y-1 receptors. Since centrally truncated NPY analogs have been shown to bind Y-1 receptors, we synthesized similar analogs of [D-Trp(32)]NPY and investigated their Y-1 (SK-N-MC) and Y-2 (SK-N-BE2) receptor affinities and their properties in human erythroleukemia (HEL) cells. None of the analogs with D-Trp(32) mobilized intracellular calcium, [Ca2]i, in HEL cells. Although Des-AA(6-24)[Aoc(6)]NPY and the corresponding D-Trp(32) analog exhibited no affinity to Y-1 receptors, Des-AA(7-24)[Aoc(6),D-Trp(32)] NPY(6) exhibited weak binding. Replacing Pro(5) in 6 with D-Ala to stabilize the central chain reversal, and hence the antiparallel alignment of the N- and C-terminal regions known to be important for Y-1 binding, resulted in an analog, Des-AA(7-24)[D-Ala(5),Aoc(6),D-Trp(32)]NPY (7), which exhibited moderate antagonist potency in attenuating NPY effects on cAMP and [Ca2+]i, in SK-N-MC and HEL cells, respectively. This analog also shifted the dose-response curve of NPY on blood pressure in anesthetized rats. Deletion of only the 7-17 and/or the incorporation of N-Me-Ala(5), superior beta-turn stabilizer, in 7 did not improve the Y-1 receptor affinity. Des-AA(7-24)[D-Ala(5), Gly(6),D-Trp(32)]NPY exhibited an affinity similar to that of 7, suggesting that a long spacer arm is not necessary for efficient Y-1 receptor interaction. Locking the antiparallel alignment via a 2/26 or 2/27 lactam bridge did not improve the binding. Finally, replacement of D-Ala(5) in 7 with D-Trp dramatically increased both the binding and the antagonistic potencies. Modeling based on the avian pancreatic polypeptide X-ray structure suggested that analogs which have the N- and C-terminal regions in close proximity might exhibit good binding, and that the D-Trp(32) substitution may induce a beta-turn that could be important for exhibiting antagonism. A systematic investigation has resulted in the development of relatively potent Y-1 receptor antagonists. Further structure-activity studies with these compounds and those previously reported by us and other investigators should result in the development of long-acting and receptor selective antagonists.  相似文献   

14.
In the absence of a broadly effective cure for hepatitis caused by hepatitis C virus (HCV), much effort is currently devoted to the search for inhibitors of the virally encoded protease NS3. This chymotrypsin-like serine protease is required for the maturation of the viral polyprotein, cleaving it at the NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B sites. In the course of our studies on the substrate specificity of NS3, we found that the products of cleavage corresponding to the P6-P1 region of the substrates act as competitive inhibitors of the enzyme, with IC50s ranging from 360 to 1 microM. A detailed study of product inhibition by the natural NS3 substrates is described in the preceding paper [Steinkühler, C., et al. (1997) Biochemistry 37, 8899-8905]. Here we report the results of a study of the structure-activity relationship of the NS3 product inhibitors, which suggest that the mode of binding of the P region-derived products is similar to the ground-state binding of the corresponding substrates, with additional binding energy provided by the C-terminal carboxylate. Optimal binding requires a dual anchor: an "acid anchor" at the N terminus and a "P1 anchor" at the C-terminal part of the molecule. We have then optimized the sequence of the product inhibitors by using single mutations and combinatorial peptide libraries based on the most potent natural product, Ac-Asp-Glu-Met-Glu-Glu-Cys-OH (Ki = 0.6 microM), derived from cleavage at the NS4A-NS4B junction. By sequentially optimizing positions P2, P4, P3, and P5, we obtained several nanomolar inhibitors of the enzyme. These compounds are useful both as a starting point for the development of peptidomimetic drugs and as structural probes for investigating the substrate binding site of NS3 by modeling, NMR, and crystallography.  相似文献   

15.
The interaction between tubulin subunits and microtubule-associated proteins (MAPs) such as tau is fundamental for microtubule structure and function. Previous work has suggested that the "microtubule binding domain" of tau (composed of three or four imperfect 18-amino acid repeats, separated by 13- or 14-amino acid inter-repeat regions) can bind to the C-terminal ends of both alpha and beta tubulin monomers. Here, using covalent cross-linking strategies, we demonstrate that there are two distinct tau cross-linking sites (designated as "C-terminal" and "internal") on each alpha and beta tubulin monomer. The C-terminal tau cross-linking site is located within the 12 C-terminal amino acids of both alpha and beta tubulin, while the internal tau cross-linking site is located within the C-terminal one-third of alpha and beta tubulin but not within the last 12 amino acids. In addition, we show that tau cross-links to the C-terminal site via its repeat 1 and/or the R1-R2 inter-repeat. The cross-linking of tau to the internal site is mediated by some subset of its other repeat units. Integrating these and earlier data with the 3.7 A resolution model of the alphabeta tubulin dimer recently presented by E. Nogales et al. [(1998), Nature 391, 199-203], we propose a new model for the tau-microtubule interaction.  相似文献   

16.
Non-claret disjunctional protein (Ncd) is a minus end-directed microtubule motor required for normal spindle assembly and integrity during Drosophila oogenesis. We have pursued equilibrium binding experiments to examine the affinity of Ncd for microtubules in the presence of the ATP nonhydrolyzable analog 5'-adenylyl-beta, gamma-imidodiphosphate (AMP-PNP), ADP, or ADP + Pi using both dimeric (MC1) and monomeric (MC6) Ncd constructs expressed in Escherichia coli. Both MC1 and MC6 sediment with microtubules in the absence of added nucleotide as well as in the presence of either ADP or AMP-PNP. Yet, in the presence of ADP + Pi, there is a decrease in the affinity of both MC1 and MC6 for microtubules. The data for dimeric MC1 show that release of the dimer to the supernatant is sigmoidal with the apparent Kd(Pi) for the two phosphate sites at 23.3 and 1.9 mM, respectively. The results indicate that binding at the first phosphate site enhances binding at the second site, thus cooperatively stimulating release. Stopped-flow kinetics indicate that MgATP promotes dissociation of the Mt.MC1 complex at 14 s-1, yet AMP-PNP has no effect on the Mt.MC1 complex. These results are consistent with a model for the ATPase cycle in which ATP hydrolysis occurs on the microtubule followed by detachment as the Ncd.ADP.Pi intermediate.  相似文献   

17.
Mutation studies on the histamine H2 receptor were reported by Gantz et al. [J. Biol. Chem., 267 (1992) 20840], which indicate that both the mutation of the fifth transmembrane Asp186 (to Ala186) alone or in combination with Thr190 (to Ala190) maintained, albeit partially, the cAMP response to histamine. Recently, we have shown that histamine binds to the histamine H2 receptor as a monocation in its proximal tautomeric form, and, moreover, we suggested that a proton is donated from the receptor towards the tele-position of the agonist, thereby triggering the biological effect [Nederkoorn et al., J. Mol. Graph., 12 (1994) 242; Eriks et al., Mol. Pharmacol., 44 (1993) 886]. These findings result in a close resemblance with the catalytic triad (consisting of Ser, His and Asp) found in serine proteases. Thr190 resembles a triad's serine residue closely, and could also act as a proton donor. However, the mutation of Thr190 to Ala190-the latter is unable to function as a proton donor-does not completely abolish the agonistic cAMP response. At the fifth transmembrane alpha-helix of the histamine H2 receptor near the extracellular surface, another amino acid is present, i.e. Tyr182, which could act as a proton donor. Furthermore, Tyr182 lies within the proximity of Asp186, so an alternative couple of amino acids, Tyr182 and Asp186, could constitute the histamine binding site at the fifth alpha-helix instead of the (mutated) couple Asp186 and Thr190. In the first part of our present study, this hypothesis is investigated with the aid of an oligopeptide with an alpha-helical backbone, which represents a part of the fifth transmembrane helix. Both molecular mechanics and ab initio data lead to the conclusion that the Tyr182/Asp186 couple is most likely to act as the binding site for the imidazole ring present in histamine.  相似文献   

18.
Evidence is presented that bacteriophage P7 specifies an analog of the E. coli DNA replication protein, dnaB. As in the related bacteriophage P1 (D'Ari et al., 1975; Ogawa, 1975), in lysogens of P7, the production of the analog protein is repressed and constitutive mutants could be isolated. Such constitutive mutants could suppress efficiently the thermosensitivity of several dnaB(ts) mutations and also rescue a strain carrying a dnaB amber mutation. While neither P7 nor the mutant P1bacban (defective in the structural gene ban) could suppress dnaB(ts) mutations efficiently, recombinants between these two phages could do so, indicating the presence of a functional dnaB analog gene (called sdb) on P7. In a dnaB amber strain suppressed by the presence of the constitutive mutant P7csb, bacteriophage lambda failed to replicate which is a further similarity between P7 and P1. P7csb mutants or P7-P1bacban recombinants were found to be less thermoresistant than P1bac1 suggesting that the P7-specified dnaB analog protein or its production is relatively less tolerant of temperatures above 37 degrees C.  相似文献   

19.
In this paper, we investigate the effects of histidyl amino acid modification on high-affinity Mn binding to photosystem II (PSII) using methods similar to those used in the preceding paper [Ghirardi et al. (1998) Biochemistry 37, 0000] for carboxyl amino acid modification. Given the rather low specificity of diethyl pyrocarbonate (DEPC) for histidine modification, we modified Tris-washed PSII membranes with a novel and more specific histidyl modifier, platinum(II) (2,2':6',2"-terpyridine) chloride (Pt-TP). Both the "diphenylcarbazide (DPC)-inhibition assay" and single-turnover flash approaches were used. The concentration dependence of Pt-TP modification on steady-state measurements shows two types of interactions, each accounting for about half of the full effect. At concentrations <50 microM, Pt-TP modifies mostly histidyls and abolishes half of the observed Mn inhibition of DPC-mediated 2,6-dichlorophenolindophenol (DCIP) photoreduction (equivalent to two high-affinity, Mn-binding ligands). This effect can be blocked by addition of Mn2+ during Pt-TP modification. Double-modification experiments with DEPC and Pt-TP demonstrate that both modifiers affect the same observable histidyl residues in PSII. Above 50 microM, Pt-TP modifies mostly cysteines (or histidines in a more hydrophobic environment) and has an additional effect on the reducing side of PSII that (a) does not involve Mn binding and (b) results in the apparent abolishment of all four of the Mn-binding ligands detected by the DPC-inhibition assay. Single-flash experiments show that histidyl modification does not eliminate the binding of the high-affinity, photooxidizable Mn2+ to Asp170 on D1 (nor does it significantly affect high-affinity DPC photooxidation), but it does decrease the binding affinity (Kd) of that Mn from 0.6 to 1.5 microM, particularly at lower (<50 microM Pt-TP) concentrations. Double-modification experiments also demonstrate that the lower affinity, photooxidizable Mn-binding site, uncovered when the high-affinity site is modified with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC) [see Ghirardi et al. (1998)], is not associated with a histidyl ligand. Three nonphotooxidizable, high-affinity Mn2+ ions bind to a second carboxyl and two histidyl ligands, and these Mn are not photooxidized by a flash even when the ligand to the photooxidizable Mn is modified by EDC. Proteolytic enzyme studies indicate that the two histidyl ligands identified by the DPC-inhibition assay are probably His337 on D1 and His 339 on D2, but His 332 on D1 is not eliminated.  相似文献   

20.
Galactose-1-phosphate uridylyltransferase catalyzes the reaction of UDP-glucose with galactose 1-phosphate (Gal-1-P) to form UDP-galactose and glucose 1-phosphate (Glc-1-P) through a double displacement mechanism, with the intermediate formation of a covalent uridylyl-enzyme (UMP enzyme). Gln 168 in E. coli uridylyltransferase engages in hydrogen bonding with the phosphoryl oxygens of the UMP moiety, which is bonded to His 166 in the intermediate [Wedekind, J. E., Frey, P. A., and Rayment, I. (1996) Biochemistry 35, 11560-11569]. In humans, the point variant Q188R accounts for 60% of galactosemia cases. The corresponding E. coli variant Q168R has been overexpressed and purified. In preparation for kinetic correlation of Q168R and wild-type uridylyltransferases, we tested the kinetic competence of the wild-type UMP-enzyme. At 4 degreesC, the first-order rate constant for uridylylation by UDP-glucose is 281 +/- 18 s-1, and for deuridylylation it is 226 +/- 10 s-1 with Glc-1-P and 166 +/- 10 s-1 with Gal-1-P. Inasmuch as the overall turnover number at 4 degreesC is 62 s-1, the covalent intermediate is kinetically competent. The variant Q168R is uridylylated by UDP-glucose to the extent of about 65% of the potential active sites. Uridylylation reactions of Q168R with UDP-glucose proceed with maximum first-order rate constants of 2.2 x 10(-)4 s-1 and 4.2 x 10(-)4 s-1 at 4 and 27 degreesC, respectively. In experiments with uridylyl-Q168R and glucose-1-P, the mutant enzyme undergoes deuridylylation with maximum first-order rate constants of 4.8 x 10(-)4 s-1 and 1.68 x 10(-)3 s-1 at 4 and 27 degreesC, respectively. The value of Km for uridylylation of Q168R is slightly higher than for the wild-type enzyme, and for deuridylylation it is similar to the wild-type value. The wild-type enzyme undergoes uridylylation and deuridylyation about 10(6) times faster than Q168R. The wild-type activity in the overall reaction is 1.8 x 10(6) times that of Q168R. The wild-type enzyme contains 1.9 mol of Zn+Fe per mole of subunits, whereas the Q168R-variant contains 1.36 mol of Zn+Fe per mole of subunits. The mutation stabilizes the uridylyl-enzyme by 1.2 kcal mol-1 in comparison to the wild-type enzyme. These results show that the low activity of Q168R is not due to overstabilization of the intermediate or to the absence of structural metal ions. Instead, the main defect is very slow uridylylation and deuridylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号