首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced glycation end products (AGE) in tissues are important for the central pathological features of diabetic complication. Although AGE bind to several cell-surface sites, resulting in altered cellular functions, receptor for AGE (RAGE) appears to have a central role. We examined AGE accumulation and RAGE expression in the aorta and heart of rats with streptozotocin (STZ)-induced diabetes, 0, 4, 8, 12, 16 and 24 weeks after STZ administration. Early atherosclerotic findings in the intima and medial thinning were observed in the aorta after 16 weeks of STZ-Induced diabetes. Immunohistochemistry and microscope spectrophotometry showed that AGE deposition increased significantly in the aorta and vessels of the myocardium, depending on the period of hyperglycaemia. RAGE was expressed in the endothelial cells and vascular smooth muscle cells of all animals. The number of smooth muscle cells with RAGE immunoreactivity increased until 12 weeks after STZ injection, and then decreased in rats with diabetes between 16 and 24 weeks. On the other hand, total RAGE mRNA levels in the aorta and heart continued to increase with the duration of hyperglycaemia. Furthermore, AGE-BSA induced RAGE mRNA expression of human umbilical vein endothelial cells in vitro. Taken together, the AGE accumulation might initiate diabetic macroangiopathy through RAGE, and the increase of RAGE expression by endothelial cells could be a reason that diabetes mellitus accelerates atherosclerosis rapidly.  相似文献   

2.
PURPOSE: Advanced glycation end products (AGEs) form irreversible cross-links with many macromolecules and have been shown to accumulate in tissues at an accelerated rate in diabetes. In the present study, AGE formation in vitreous was examined in patients of various ages and in patients with diabetes. Ex vivo investigations were performed on bovine vitreous incubated in glucose to determine AGE formation and cross-linking of vitreous collagen. METHODS: By means of an AGE-specific enzyme-linked immunosorbent assay (ELISA), AGE formation was investigated in vitreous samples obtained after pars plana vitrectomy in patients with and without diabetes. In addition, vitreous AGEs were investigated in bovine vitreous collagen after incubation in high glucose, high glucose with aminoguanidine, or normal saline for as long as 8 weeks. AGEs and AGE cross-linking was subsequently determined by quantitative and qualitative assays. RESULTS: There was a significant correlation between AGEs and increasing age in patients without diabetes (r = 0.74). Furthermore, a comparison between age-matched diabetic and nondiabetic vitreous showed a significantly higher level of AGEs in the patients with diabetes (P < 0.005). Collagen purified from bovine vitreous incubated in 0.5 M glucose showed an increase in AGE formation when observed in dot blot analysis, immunogold labeling, and AGE ELISA. Furthermore, there was increased cross-linking of collagen in the glucose-incubated vitreous, when observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein separation. This cross-linking was effectively inhibited by coincubation with 10 mM aminoguanidine. CONCLUSIONS: This study suggests that AGEs may form in vitreous with increasing age. This process seems to be accelerated in the presence of diabetes and as a consequence of exposure to high glucose. Advanced glycation and AGE cross-linking of the vitreous collagen network may help to explain the vitreous abnormalities characteristic of diabetes.  相似文献   

3.
BACKGROUND: Advanced glycation endproducts (AGEs) arise from the spontaneous reaction of reducing sugars with the amino groups of macromolecules. AGEs accumulate in tissue as a consequence of diabetes and aging and have been causally implicated in the pathogenesis of several of the end-organ complications of diabetes and aging, including cataract, atherosclerosis, and renal insufficiency. It has been recently proposed that components in mainstream cigarette smoke can react with plasma and extracellular matrix proteins to form covalent adducts with many of the properties of AGEs. We wished to ascertain whether AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers. MATERIALS AND METHODS: Lens and coronary artery specimens from nondiabetic smokers and nondiabetic nonsmokers were examined by immunohistochemistry, immunoelectron microscopy, and ELISA employing several distinct anti-AGE antibodies. In addition, lenticular extracts were tested for AGE-associated fluorescence by fluorescence spectroscopy. RESULTS: Immunoreactive AGEs were present at significantly higher levels in the lenses and lenticular extracts of nondiabetic smokers (p < 0.003). Anti-AGE immunogold staining was diffusely distributed throughout lens fiber cells. AGE-associated fluorescence was significantly increased in the lenticular extracts of nondiabetic smokers (p = 0.005). AGE-immunoreactivity was significantly elevated in coronary arteries from nondiabetic smokers compared with nondiabetic nonsmokers (p = 0.015). CONCLUSIONS: AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers than in nonsmokers, irrespective of diabetes. In view of previous reports implicating AGEs in a causal association with numerous pathologies, these findings have significant ramifications for understanding the etiopathology of diseases associated with smoking, the single greatest preventable cause of morbidity and mortality in the United States.  相似文献   

4.
The activation of latent transforming growth factor beta (L-TGFbeta) is essential for the action of TGFbeta, which, in turn, is involved in the regulation of expression of some progesterone-responsive genes. One mechanism by which TGFbeta is activated involves thrombospondin (TSP), a protein that binds extracellular proteins. Immunoreactive TSP (irTSP) protein and TSP-1 mRNA in myometrial tissues of ovulatory and pregnant women were localized by immunohistochemistry and in situ hybridization. IrTSP and TSP-1 mRNA were randomly distributed in myometrial smooth muscle cells of some, but not all, tissues of pregnant women at term before labor; but in some areas of most of these tissues, irTSP was intense and commonly localized extracellularly. Intense irTSP and TSP-1 mRNA in myocytes were more common in myometrium during labor. In myometrium from ovulatory women (n = 26), irTSP was localized primarily in vascular smooth muscle cells and was detected occasionally in scattered myocytes. Little TSP-1 mRNA was demonstrable by in situ hybridization in vessels or myocytes of myometrial tissue from ovulatory women (n = 7). By Northern analysis of total RNA, TSP-1 mRNA was detected in myometrial tissue of pregnant women and in human myometrial smooth muscle cells in culture. The levels of TSP-1 mRNA in myometrial tissues of pregnant women during labor (n = 18) were greater than those in myometrium at > 37 wk gestation before labor began (n = 25, p < 0.001). The ratios of TSP-1 to glyceraldehyde 3-phosphate dehydrogenase mRNAs in 3 myometrial tissues during oxytocin-induced labor were not statistically different from those in myometrium during spontaneous labor but were greater than those in myometrium before labor (p < 0.05). The level of TSP-1 mRNA in confluent human myometrial cells in culture was relatively high, was increased by treatment with fetal bovine serum, and was decreased by treatment with platelet-derived growth factor or activators of adenylyl cyclase or protein kinase C. Myometrial cells in culture constitute a useful model for studying the regulation of TSP-1 gene expression in human myometrium.  相似文献   

5.
With advancing age, a series of structural, architectural and compositional modifications take place in the vasculature. The diameter of the vessels tends to increase, and thickening of intimal and medial layers is often observed. In the subendothelial space, blood-derived leukocytes and an increased amount of "activated" smooth muscle cells are present. Extracellular matrix accumulates and becomes particularly rich in glycosaminoglycans. Collagen content increases, while elastin fibers appear progressively disorganized, thinner, and frequently fragmented. These changes in the normal architecture of the vessel wall, that could be referred to as "the vasculopathy of aging", are likely to be the consequence of adaptive mechanisms to maintain normal conditions of flow, mechanical stress and/or wall tension. Although many of these features are similar to the histological findings of the atherosclerotic vessels, atherosclerosis and age-related "vasculopathy" are two distinct phenomena. Nonetheless, several experimental observations in animal models suggest a special link between "the vasculopathy of aging" and atherosclerotic disease, and suggest a particular predisposition of the old vessel to develop the atherosclerotic lesion. Compared to vessels from young animals, older ones show a greater reactivity to mechanical injury and to chronic insults. This may reflect changes in the biology of the vessels that are "intrinsic" to the aging process. Indeed, aging affects the function and responsiveness of the endothelium and vascular smooth muscle cells. Endothelial permeability is increased with age, while ability to produce vasoactive substances declines. Smooth muscle cells from old individuals show a growth advantage over the young ones, and display an increased ability to migrate toward chemoattractants. Moreover, the accumulation of advanced glycation end products (AGEs) occurring with aging can trigger a series of cellular events, such as cellular oxidative stress, expression of leukocyte adhesion molecules, endothelial transmigration of monocytes, and smooth muscle cell chemotaxis, all considered important prelesional events in the atherogenesis process. Taken together, the changes occurring with aging, while unproven to initiate lesion formation per se, are likely to accelerate the development of the atherosclerotic plaque and contribute to increased severity of this disease in the elderly.  相似文献   

6.
7.
While non-enzymatic glycation of long-lived tissue proteins such as collagen has been implicated in chronic complications of diabetes mellitus, its role in the aetiology of diabetic macroangiopathy has not been elucidated. To test the hypothesis that glycation of collagen abolishes the inhibitory effect of native collagen on the proliferation of human smooth muscle cells, we obtained smooth muscle cells from human gastric arteries and cultured them on dishes coated with glycated or non-glycated collagen. The proliferation of human smooth muscle cells in the presence of 10% fetal calf serum or platelet derived growth factor-BB (10 ng/ml) was inhibited by type 1 collagen coated on the dishes. Glycation of collagen with glucose 6-phosphate for 7 days abolished the growth-inhibitory effect of native collagen. Succinylation of collagen, which like glycation blocked the lysyl residues in collagen, also abolished the growth-inhibitory effect. Adhesion of human smooth muscle cells to collagen-coated dishes was not affected by glycation of collagen. Addition of glycated albumin to the medium did not affect the growth of human smooth muscle cells on plastic dishes. The inhibition of human smooth muscle cell proliferation by collagen was not reversed by the glycation of collagen in the presence of aminoguanidine. Results suggest that early glycation abolishes the inhibitory effect of collagen on human smooth muscle cell proliferation and may thus participate in the progression of macro-angiopathy in diabetes.  相似文献   

8.
9.
The receptor for advanced glycation end products, RAGE, is a member of the immunoglobulin superfamily of cell surface molecules differentially expressed on a range of cell types. Ligation of RAGE perturbs homeostatic mechanisms and, potentially, provides a basis for cellular dysfunction in pathologic situations in which its ligands accumulate. To understand factors underlying RAGE expression, we cloned the 5'-flanking region of the RAGE gene and characterized putative regulatory motifs. Analysis of the putative promoter region revealed the presence of three potential NF-kappaB-like and two SP1 binding sites. Transient transfection of vascular endothelial and smooth muscle cells using chimeric 5'-deletion constructs linked to luciferase reporter revealed that the region -1543/-587 contributed importantly to both basal and stimulated expression of the RAGE gene. This region of the RAGE gene contained three putative NF-kappaB-like binding sites and was responsible for increased luciferase activity observed when endothelial or smooth muscle cells were stimulated with lipopolysaccharide. DNase I footprinting assays and electrophoretic mobility shift assay revealed that two of the three NF-kappaB-like binding sites (1 and 2) were likely functional and responsive to stimuli. Upon simultaneous mutation of NF-kappaB-like sites 1 and 2, both basal promoter expression and response to stimulation with LPS, as measured by relative luciferase activity, were significantly diminished. These results point to NF-kappaB-dependent mechanisms regulating cellular expression of RAGE and suggest a means of linking RAGE to the inflammatory response.  相似文献   

10.
Diabetes is a risk factor for periodontal disease in humans. In hyperglycemia, glycoxidation of proteins and lipids results in the formation of advanced glycation endproducts, or AGEs. The accumulation of AGEs in the plasma and tissues, and their interaction with their cellular receptor for AGE (RAGE), has been implicated in diabetic complications. In order to establish a model with which to delineate the specific host response factors that underlie the development of periodontal disease in diabetes, male C57BL/6J mice were rendered diabetic with streptozotocin. One month after documentation of diabetes or control state, mice were inoculated with the human periodontal pathogen Porphyromonas gingivalis, strain 381 (P. gingivalis) or treated with vehicle. Infection with P. gingivalis was achieved, as demonstrated by infiltration of gingival tissue with granulocytes, presence of DNA specific for P. gingivalis as well as increased serum antibody titer to P. gingivalis. At 2 and 3 months after infection, increased alveolar bone loss was demonstrated in P. gingivalis-inoculated diabetic vs. non-diabetic mice, along with enhanced tissue-destructive capacity, as demonstrated by increased collagenolytic activity in gingival extracts. Consistent with an important role for AGE-RAGE interaction, increased AGE deposition and expression of vascular and monocyte RAGE were demonstrated in diabetic gingiva compared with non-diabetic controls. Taken together, these data indicate that we have established a murine model of enhanced periodontal disease in diabetes. This model will serve to delineate molecular mechanisms which account for the increased susceptibility of diabetic patients to periodontal disease.  相似文献   

11.
The effect of low density lipoprotein (LDL) on the intracellular mRNA concentration of the protooncogene c-myc was studied in freshly isolated bovine vascular smooth muscle cells and in the rat aortic smooth muscle cell line A7r5. Northern analysis showed that LDL increased the mRNA levels of c-myc in both cell lines, the stimulation being 2-fold after 2 h incubation at a concentration of 50 micrograms LDL-protein/ml. High density lipoprotein (HDL) had no effect on c-myc mRNA levels in A7r5 cells. These results demonstrate that LDL, but not HDL, increases intracellular concentrations of c-myc in two different aortic smooth muscle cell lines.  相似文献   

12.
Phenotypic modulation of vascular smooth muscle cells plays an important role in the pathogenesis of arteriosclerosis. In a screen of proteins expressed in human aortic smooth muscle cells, we identified a novel gene product designated aortic carboxypeptidase-like protein (ACLP). The approximately 4-kilobase human cDNA and its mouse homologue encode 1158 and 1128 amino acid proteins, respectively, that are 85% identical. ACLP is a nonnuclear protein that contains a signal peptide, a lysine- and proline-rich 11-amino acid repeating motif, a discoidin-like domain, and a C-terminal domain with 39% identity to carboxypeptidase E. By Western blot analysis and in situ hybridization, we detected abundant ACLP expression in the adult aorta. ACLP was expressed predominantly in the smooth muscle cells of the adult mouse aorta but not in the adventitia or in several other tissues. In cultured mouse aortic smooth muscle cells, ACLP mRNA and protein were up-regulated 2-3-fold after serum starvation. Using a recently developed neural crest cell to smooth muscle cell in vitro differentiation system, we found that ACLP mRNA and protein were not expressed in neural crest cells but were up-regulated dramatically with the differentiation of these cells. These results indicate that ACLP may play a role in differentiated vascular smooth muscle cells.  相似文献   

13.
The role of the endothelium in modulating smooth muscle cell growth is unclear. alpha 1 adrenergic receptors activate proto-oncogene expression in smooth muscle. We have now found in rat aorta that carbachol, a muscarinic cholinergic agonist that promotes release of nitric oxide (NO), inhibits expression of c-fos and c-jun mRNA induced by alpha 1 receptors. NO synthase inhibitors blocked the effects of carbachol on c-fos mRNA and a cGMP analog mimicked carbachol. After balloon injury in rat aorta using in situ hybridization, the catecholamine-induced increase in c-fos mRNA expression in the medial layer was inhibited by the alpha 1 receptor antagonists, prazosin and chloroethylclonidine. In the neointima, this response was fully blocked by prazosin; however, chloroethylclonidine only partially inhibited it. These results suggest that NO, acting through a cGMP-dependent mechanism, inhibits expression of the c-fos and c-jun genes in arteries, which may contribute to the growth-inhibiting effects of the endothelium. After endothelial damage, the activation of c-fos in neointima by adrenergic stimulation may involve a subtype of alpha 1 receptor different from that utilized in medial smooth muscle.  相似文献   

14.
The formation of Maillard products is increased in the diabetes mellitus. These advanced glycated end products (AGEs) alter metabolic functions of macromolecules and increase free radical formation while decreasing free radical-scavenging enzyme activity. The elimination of AGEs is insured by the macrophage cells equipped with appropriate receptors (RAGE) and cleared by kidneys. The knowledge of these molecular mechanisms had allowed the emergence of biochemical analytes such as 3-deoxyglucosone, pentosidine, and carboxymethyl-lysine, as markers of the ris of micro- and macro-angiopathy, the main chronic complications of the diabetes mellitus.  相似文献   

15.
BACKGROUND: Lactate increases lucigenin chemiluminescence (CL)-detectable superoxide anion (O2.-) generation in bovine vascular smooth muscle and endothelium, and a microsomal flavoprotein-containing NADH oxidase whose activity is regulated by PO2 and cytosolic NAD(H) redox appears to be the detected source of O2.- production. Little is known about the importance of this O2.(-)-producing system in cardiac myocytes. METHODS AND RESULTS: In isolated bovine cardiac myocytes, lactate (10 mmol/L) increased lucigenin-detectable O2.- levels to approximately 1.8 times baseline, whereas pyruvate (10 mmol/L) and mitochondrial probes did not increase the detection of O2.-. A nonmitochondrial NADH oxidase activity, found in microsomes containing a cytochrome b558, was a major source of O2.- production in the homogenate of myocytes, because NADH (0.1 mmol/L) increased basal lucigenin CL >100-fold. NADPH oxidases, mitochondria, and xanthine oxidase were minor sources of detectable O2.- production. However, mitochondria released H2O2 in the presence of 5 mmol/L succinate and 30 micromol/L antimycin, based on its detection as catalase-inhibitable luminol (+horseradish peroxidase)-elicited CL. Diphenyliodonium (DPI), an inhibitor of flavoprotein-containing oxidases, significantly attenuated basal, lactate, and NADH-elicited lucigenin CL. Hypoxia eliminated myocyte lucigenin CL, and posthypoxic reoxygenation caused an 8.6-fold increase in the detection of O2.- that was potentiated by lactate and inhibited by DPI. CONCLUSIONS: NADH oxidase activity linked to cytosolic NAD(H) redox appears to be a key source of O2.- production in cardiac myocytes that could contribute to oxidant signaling mechanisms and injury upon exposure to changes in PO2 and metabolites produced under hypoxia, such as lactate. These processes could contribute to the previously observed potentiation of injury caused by lactate in cardiac ischemia/reperfusion.  相似文献   

16.
BACKGROUND: Cyclic ADP-ribose (cADPR) has been shown to act as a potent cytosolic mediator in a variety of tissues, regulating the release of Ca2+ from intracellular stores by a mechanism that involves ryanodine receptors. There is controversy over the effects of cADPR in cardiac muscle, although one possibility is that endogenous cADPR increases the Ca2+ sensitivity of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum. We investigated this possibility using 8-amino-cADPR, which has been found to antagonize the Ca2+-releasing effects of cADPR on sea urchin egg microsomes and in mammalian cells (Purkinje neurons, Jurkat T cells, smooth muscle and PC12 cells). RESULTS: In intact cardiac myocytes isolated from guinea-pig ventricle, cytosolic injection of 8-amino-cADPR substantially reduced contractions and Ca2+ transients accompanying action potentials (stimulated at 1Hertz). These reductions were not seen with injection of HEPES buffer, with heat-inactivated 8-amino-cADPR, or in cells pretreated with ryanodine (2 microM) to suppress sarcoplasmic reticulum function before injection of the 8-amino-cADPR. L-type Ca2+ currents and the extent of Ca2+ loading of the sarcoplasmic reticulum were not reduced by 8-amino-cADPR. CONCLUSIONS: These observations are consistent with the hypothesis that endogenous cADPR plays an important role during normal contraction of cardiac myocytes. One possibility is that cADPR sensitizes the CICR mechanism to Ca2+, an action antagonized by 8-amino-cADPR (leading to reduced Ca2+ transients and contractions). A direct effect of 8-amino-cADPR on CICR cannot be excluded, but observations with caffeine are not consistent with a non-selective block of release channels.  相似文献   

17.
18.
Adult sensory neurons differ chemically, morphologically, and functionally, but the factors that generate their diversity remain unclear. For example, neuropeptides are generally found in small neurons, whereas abundant neurofilament is common in large neurons. Neurons containing the neuropeptides calcitonin gene-related peptide (CGRP) or substance P were quantified using immunohistochemistry in rat lumbar dorsal root ganglion (DRG) at times before and after sensory neurons contact central and peripheral targets in vivo. No neurons in the newly formed DRG expressed neuropeptide or neuropeptide mRNA, but neuropeptides were detectable about the time that axons connect with peripheral targets. To determine the requirement for target in neuropeptide regulation, embryonic DRG neurons were isolated at times before central and peripheral connections had formed, placed in culture, and immunocytochemically assayed for CGRP and substance P. Cultured neurons expressed neuropeptides with a time course and in proportions similar to those in vivo. Thus, some neurons in the embryonic DRG seem to be intrinsically specified to later express CGRP and substance P. The percentage of CGRP-immunoreactive neurons was not changed by cell density, non-neuronal cells, neurotrophins in addition to nerve growth factor (NGF), or antibody inactivation of neurotrophin-3 in the presence of NGF. To test the role of extrinsic cues on CGRP expression, DRG neurons were co-cultured with potential target tissues. Co-culture with a rat epidermal or smooth muscle cell line increased the proportion of CGRP-containing neurons, whereas primary skeletal muscle and 3T3 cells had no effects. Thus, multiple appropriate sensory neuron phenotypes arise in a regulated fashion in cultured neurons isolated before target connections have formed, and some candidate target tissues can modulate that intrinsic expression pattern.  相似文献   

19.
20.
Extracellular nucleotides, particularly ATP, are involved in the modulation of arterial vasomotricity via P2 purinoceptors present on smooth muscle and endothelial cells. These nucleotides could also be implicated in the smooth muscle cell hyperplasia observed in intimal lesions. In this study, we tried to define the potential role of the P2Y2 (P2u) purinoceptor by studying its expression in normal and balloon-injured rat aortas. The cloning of a rat P2Y2 cDNA from a rat smooth muscle cell cDNA library made it possible to study P2Y2 expression both by Northern blot and in situ hybridization. Northern blot experiments indicated that P2Y2 mRNA was present in rat medial aortic smooth muscle and in cultured rat aortic smooth muscle cells. In situ hybridization indicated that P2Y2 mRNA was present in endothelial cells of the intima and in some smooth muscle cells scattered throughout the media of adult rat aortas, while almost all medial smooth muscle cells of rat embryo aorta expressed this receptor. In contrast with adult aortic media, the majority of neointimal smooth muscle cells found in aortic intimal lesions either 8 or 20 days after balloon injury were positive for P2Y2 mRNA. Moreover, a subpopulation of neointimal cells localized at the luminal surface could be identified by a higher P2Y2 expression than the underlying neointimal smooth muscle cells. These data showing a strong expression of the P2Y2 purinoceptor in the neointima of injured arteries suggest that extracellular nucleotides may be involved, via this receptor, in the intimal hyperplasia and/or chronic constriction observed at the lesion site, and consequently in the restenotic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号