首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role that metabolic products play in regulating the hypothalamic-pituitary-adrenal (HPA) axis during strenuous exercise is speculative. This investigation examined the extent to which lactic acid, a major metabolite of anaerobic exercise, directly affects hypothalamic-pituitary function. Specifically, beta-endorphin secretion was measured from AtT-20 (D-16) mouse corticotroph tumor cells treated either acutely (15 min - 180 min) or chronically (1 day - 3 day) with physiologic levels of lactate (0. 5 x 10-3 M to 5 x 10-2 M) or lactate in combination with the corticotroph releasing factors: corticotroph releasing hormone (CRH), arginine vasopressin (AVP), norepinephrine and/or epinephrine. Findings with AtT-20 cell cultures were shown to be representative of responses in primary cultures of rat anterior pituitary. Lactic acid did not alter the spontaneous release of beta-endorphin by AtT-20 cells under either acute or chronic conditions. While CRH, norepinephrine, and epinephrine evoked significant increases in beta-endorphin release, lactate, in combination with these secretagogues did not alter their effects. Similarly, lactic acid failed to alter basal or stimulated release of beta-endorphin by primary cultures of rat anterior pituitary. The addition of lactate (3 x 103 M) to rat hypothalamic explants did, however, produce a modest but significant reduction in spontaneous CRH release, suggesting that lactate may facilitate the return to basal secretion following exercise. The present findings show that physiologic concentrations of lactate have no effect, either alone or in combination with other pituitary secretagogues, on corticotroph secretion. Whereas a physiologic action for lactate within the hypothalamus is possible, the present findings indicate that lactate is an inhibitor of CRH release. Thus, lactate does not appear to play a direct role in the profound activation of the HPA axis that occurs in response to strenuous exercise.  相似文献   

2.
In PC12 cells, forskolin as well as the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased intracellular adenosine-3',5'-cyclic monophosphate (cyclic AMP) levels, which peaked at 45-60 minutes and declined thereafter. Maximum levels were 3000 and 1700 pmol/10(6) cells during treatment with 10 microM forskolin or 0.1 microM NECA, respectively. Extracellular cyclic AMP rose with time, at mean rates of 24.7 (forskolin) and 11.3 (NECA) pmol/min/10(6) cells. With either drug, a linear correlation was obtained between the calculated time integral of intracellular cyclic AMP and the measured extracellular cyclic AMP levels, indicating that the outflow of cyclic AMP was sustained by a nonsaturated transport system. The ability of forskolin to increase intracellular and extracellular cyclic AMP levels was hindered in a concentration-dependent manner by 8-(p-sulfophenyl)theophylline (8-SPT). A similar inhibition was exerted by other two adenosine receptor antagonists, 8-cyclopentyl-1,3-dipropylxanthine and 3,7-dimethyl-1-propargylxanthine. The concentration-response curve to adenosine was shifted to the right by 25 microM 8-SPT, whereas that of forskolin was shifted downwards. Adenosine deaminase (ADA, EC 3.5.44, 1 U/mL) reduced the intracellular cyclic AMP response to forskolin by 68%, whereas the adenosine transport inhibitor, dipyridamole (10 microM), significantly increased 1 and 10 microM forskolin-dependent cyclic AMP accumulation. Erythro-9-(2-hydroxy-3-nonyl)adenine (10 microM), an inhibitor of ADA, and alpha,beta-methyleneadenosine 5'-diphosphate (100 microM), an inhibitor of ecto-5'-nucleotidase, did not alter forskolin activity. These results demonstrate that a cyclic AMP extrusion system operates in PC12 cells during adenylyl cyclase stimulation by forskolin and that this stimulation involves a synergistic interaction with endogenous adenosine. However, extruded cyclic AMP does not appear to significantly contribute to the formation of the endogenous adenosine pool.  相似文献   

3.
1. We examined various type-selective phosphodiesterase (PDE) inhibitors on glucose-induced insulin secretion from rat isolated islets, on islet PDE activity and on islet cyclic AMP accumulation in order to assess the relationship between type-selective PDE inhibition and modification of insulin release. 2. The non-selective PDE inhibitor, 3-isobutyl-1-methylxanthine (IBMX, 10(-5)-10(-3) M), as well as the type III selective PDE inhibitors SK&F 94836 (10(-5)-10(-3) M), Org 9935 (10(-7)-10(-4) M), SK&F 94120 (10(-5)-10(-4) M) and ICI 118233 (10(-6)-10(-4) M) each caused concentration-dependent augmentation (up to 40% increase) of insulin release in the presence of a stimulatory glucose concentration (10 mM), but not in the presence of 3 mM glucose. 3. Neither the type IV PDE inhibitor rolipram (10(-4) M) nor the type I and type V PDE inhibitor, zaprinast (10(-4)-10(-3) M) modified glucose-induced insulin release when incubated with islets, although a higher concentration of rolipram (10(-3) M) inhibited secretion by 55%. However, when islets were preincubated with these drugs followed by incubation in their continued presence, zaprinast (10(-6)-10(-4) M) produced a concentration-dependent inhibition (up to 45% at 10(-4) M). Under these conditions, rolipram inhibited insulin secretion at a lower concentration (10(-4) M) than when simply incubated with islets. 4. A combination of SK&F 94836 (10(-5) M) and forskolin (5 x 10(-8) M) significantly augmented glucose-induced insulin secretion (30% increase), although neither drug alone, in these concentrations, produced any significant effect. 5. Islet cyclic AMP levels, which were not modified by forskolin (10-6 M), SK&F 94836 (10-4 M) or Org 9935 (10-5 M) were significantly elevated (approximately 3.7 fold increase) by forskolin inc ombination with either SK&F 94836 or Org 9935.6 Homogenates of rat islets showed a low Km (1.7 microM) and high Km (13 microM) cyclic AMP PDE in the supernatant fractions (from 48,000 g centrifugation), whereas the particulate fraction showed only a low Km (1.4 microM) cyclic AMP PDE activity.7. The PDE activity of both supernatant and pellet fractions were consistently inhibited by SK&F94836 or Org 9935, the concentrations required to reduce particulate PDE activity by 50% being 5.5 and 0.05 microM respectively.8 Rolipram (10-5 10-4 M) did not consistently inhibit PDE activity in homogenates of rat islets and zaprinast (10-4 M) consistently inhibited activity by 30% in the supernatant fraction, but not consistently in the pellet.9 These data are consistent with the presence of a type III PDE in rat islets of Langerhans.  相似文献   

4.
The effect of (+)-5-oxo-D-prolinepiperidinamide monohydrate (NS-105), a novel cognition enhancer, on adenylate cyclase activity was investigated in cultured neurons of the mouse cerebral cortex. NS-105 (10(-7) and 10(-6) M) inhibited forskolin-stimulated cyclic AMP formation, an action that was dependent on pertussis toxin-sensitive G proteins. Conversely, in pertussis toxin-pretreated neurons, NS-105 (10(-7)-10(-5) M) significantly enhanced the forskolin-stimulated cyclic AMP formation, and this action was completely reversed by cholera toxin. A metabotropic glutamate receptor agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S, 3R-ACPD) produced similar bi-directional actions on the cyclic AMP formation. Both of these inhibitory and facilitatory actions of NS-105 and 1S, 3R-ACPD were blocked by L(+)-2-amino-3-phosphopropinoic acid (L-AP3). NS-105 (10(-6) M) and 1S, 3R-ACPD (10(-4) M) significantly enhanced isoproterenol- and adenosine-stimulated cyclic AMP formation. The enhancement of such Gs-coupled receptor agonists-stimulated cyclic AMP formation was also produced by quisqualate but not by L(+)-2-amino-4-phosphonobutanoate (L-AP4). The phosphoinositides hydrolysis was enhanced by 1S, 3R-ACPD (10(-4) M) but not by NS-105 (10(-6) M), however, 1S, 3R-ACPD-induced increase in phosphoinositides turnover was attenuated by NS-105. These findings suggest that NS-105 stimulates metabotropic glutamate receptor subclasses that are coupled both negatively and positively to adenylate cyclase, but it acts as an antagonist at the receptor subclasses that are linked to phosphoinositides hydrolysis.  相似文献   

5.
The possible modulatory role of microtubules or closely related colchicine-sensitive structures in the response of human lymphocytes to mitogenic lectins was investigated. Colchicine (0.1 to 10 muM) AND VINBLASTINE (0.1 TO 10 MUM) inhibited early [14C]-aminoisobutyric acid and late [3H]-thymidine uptake in phytohemagglutinin-and concanavalin A-stimulated human lymphocytes but failed to alter 45Ca uptake. Lumicolchicine, an inactive congener of colchicine, was ineffective in all three systems. Both microtubular agents accentuated and prolonged the early cyclic AMP response to lectin. Little or no alteration in cyclic AMP levels was seen with colchicine or vinblastine alone or in combination with PGE (10MUM) or epinephrine (1muM) suggesting that the effect on cyclic AMP metabolism is largely selective for lectin stimulation. Neither microtunular agent altered 125I-concanacalin A binding. Since the inhibition of DNA synthesis was throughout the culture period and early aminoisobutyric acid uptake is affected, it appears that these agents are acting on an early event, or events, in the activation sequence. Although the mechanism of the inhibition is not known, the effect of colchicine and vinblastine in prolonging the cyclic AMP response to lectin may be involved. Alternatively, alterations in microtubules assembly may exert effects on membrane architecture interfering with propagation of the stimulus from the membrane to the cell interior.  相似文献   

6.
Prostaglandins (PGs) lower intraocular pressure by increasing uveoscleral outflow, presumably via a receptor-mediated mechanism coupled to a second messenger pathway in the ciliary muscle. In the present study, we examined the effect of prostanoids on cyclic AMP production in cultured human ciliary muscle cells. Cells were identified based on their expression of smooth muscle specific alpha-actin and monoclonal antibody against desmin. Cyclic AMP production in confluent cells incubated with buffer solution containing various concentrations of prostanoids was analyzed by radioimmunoassay. PGE2 caused a time-dependent increase in cyclic AMP concentrations which reached a maximum after 10 mins. With the exception of PGD2, all prostanoids produced a concentration-dependent increase in cyclic AMP levels with the following rank order of activity: PGE2 > 11-deoxy-PGE1 > 16,16-dimethyl PGE2 > sulprostone > PGF2alpha. PGE2-induced increase on cyclic AMP levels was unaffected by AH6809, an antagonist at both PGD2 (DP) and E2 (EP1) receptors. Flurbiprofen decreased basal cyclic AMP concentrations suggesting that intramurally-generated PGs stimulate the formation of the nucleotide in ciliary smooth muscle cells. PGE2-induced increases in cyclic AMP production was synergistic with those induced by the diterpene activator of adenylyl cyclase, forskolin. We conclude that prostanoids active at EP2-receptors can stimulate cyclic AMP production in cultured human ciliary muscle cells.  相似文献   

7.
8.
The effect of cyanide (10(-7) M), thiocyanate (10(-4) M) and nicotine (10(-7) M) on the concentration-response curves of 5-hydroxytryptamine, norepinephrine and epinephrine were investigated in human isolated umbilical arteries and veins. Cyanide significantly affected the responses of arterial strips to 5-hydroxytryptamine, norepinephrine and epinephrine: It caused significant leftward shifts of the 5-hydroxytryptamine concentration-response curves and significantly potentiated the contractile effects of norepinephrine and epinephrine in the case of norepinephrine, and epinephrine concentration reached 10(-6) and 10(-7) M respectively in the bath medium. Cyanide did not show any significant effect on the concentration-response curves of 5-hydroxytryptamine, norepinephrine and epinephrine in veins. Nicotine interacted with the response of adrenergic agonists both in arteries and veins; in arteries it potentiates the contractile response of epinephrine; in veins, it inhibited the dilatory responses of norepinephrine and potentiated the contractile effect of high concentration of epinephrine (10(-6) M). Thiocyanate did not cause any difference on any cumulative concentration-response curves either on the vessels. However, none of these individual effects of cyanide and nicotine were observed when the cyanide, thiocyanate and nicotine were added in combination in the isolated organ bath medium.  相似文献   

9.
The possible participation of cyclic AMP in the stress-induced synthesis of two small stress proteins, hsp27 and alpha B-crystallin, in C6 rat glioma cells was examined by specific immunoassays, western blot analysis, and northern blot analysis. When C6 cells were exposed to arsenite (50-100 microM for 1 h) or heat (42 degrees C for 30 min), expression of hsp27 and alpha B-crystallin was stimulated, with levels of the two proteins reaching a maximum after 10-16 h of culture. Induction of hsp27 was markedly enhanced when cells were exposed to arsenite in the presence of isoproterenol (20 microM) or epinephrine (20 microM) but not in the presence of phenylephrine. The stimulatory effects of isoproterenol and epinephrine were blocked completely by propranolol, an antagonist of beta-adrenergic receptors. Cholera toxin (2 micrograms/ml), forskolin (20 microM), and dibutyryl cyclic AMP (2.5 mM), all of which are known to increase intracellular levels of cyclic AMP, also stimulated the arsenite- or heat-induced accumulation of hsp27. Treatment of cells with each of these modulators alone did not result in the induction of hsp27. The level of hsp70 in C6 cells, as estimated by western blot analysis, was also enhanced by arsenite or heat stress. However, induction of hsp70 by stress was barely stimulated by isoproterenol. By contrast, induction of alpha B-crystallin by heat or arsenite stress was suppressed when isoproterenol, cholera toxin, forskolin, or dibutyryl cyclic AMP was present during the stress period. Northern blot analysis of the expression of mRNAs for hsp70, hsp27, and alpha B-crystallin showed that the modulation of the stress-induced accumulation of the three hsps by the various agents was regulated at the level of the corresponding mRNA. These results indicate that stress responses of hsp70, hsp27, and alpha B-crystallin in C6 rat glioma cells are regulated differently and, moreover, that when the level of cyclic AMP increases in cells, the response to stress of hsp27 is stimulated but that of alpha B-crystallin is suppressed.  相似文献   

10.
1. Thapsigargin stimulated the accumulation of cell-associated platelet-activating factor (PAF) and extracellular prostaglandin E2 (PGE2) in rat peritoneal macrophages. PAF in the conditioned medium was less than the detectable amount. To obtain further insight into the mechanism of PAF accumulation, the role of PGE2 in PAF accumulation was investigated. 2. When macrophages were incubated in medium containing thapsigargin (30 ng ml(-1), 46.1 nM) and cyclo-oxygenase inhibitors such as indomethacin, naproxen or ibuprofen, the PAF content of the cells at 10 min was increased in a concentration-dependent manner in accordance with inhibition of PGE2 production. The stimulation by thapsigargin, cyclo-oxygenase inhibitors did not increase PAF accumulation. 3. In thapsigargin-stimulated macrophages, when PGE2(10(-7) M) was added to the medium, the cyclo-oxygenase inhibitor-induced stimulation of PAF accumulation at 10 min was markedly inhibited. 4. The accumulation of PAF induced by thapsigargin alone at 10 min was inhibited by exogenous PGE2 (10(-8) and 10(-7) M), or arachidonic acid (10(-6) and 10(-5) M) in accordance with the increase in PGE2 production. 5. The accumulation of PAF induced by thapsigargin alone or by thapsigargin and indomethacin (10(-6) M) was inhibited by dibutyryl cyclic AMP. 6. These results indicate that the concurrently produced PGE2 in thapsigargin-stimulated macrophages down-regulates PAF accumulation by increasing intracellular cyclic AMP levels, and that cyclo-oxygenase inhibitors increase PAF accumulation by inhibiting PGE2 production.  相似文献   

11.
A beta-adrenoceptor agonist isoprenaline potently stimulated cyclic AMP formation in chick cerebral cortical slices. L-Noradrenaline (10-1000 microM) also increased cortical nucleotide synthesis, the effect being antagonized by beta-adrenoceptor blocker propranolol, and not affected by alpha 1- and alpha 2-adrenoceptor blockers, prazosin and yohimbine, respectively. Clonidine, a selective alpha 2-agonist, had no effect on cerebral cyclic AMP production stimulated by both isoprenaline and forskolin. However, clonidine (0.001-10 microM) concentration-dependently suppressed forskolin-driven cyclic AMP synthesis in intact chick pineal glands. In living chicks clonidine suppressed the nocturnal activity of cyclic AMP-dependent serotonin N-acetyltransferase, a rate-limiting enzyme in melatonin biosynthesis, the effect being prevented by yohimbine. The data suggest that the cyclic AMP generating system of the pineal gland, but not that of cerebral cortex in chick, is negatively regulated by alpha 2-adrenergic receptor-mediated signal.  相似文献   

12.
1. Guanosine 3':5'-cyclic monophosphate (cyclic GMP) is an important second messenger mediating the effects of nitric oxide (NO) and natriuretic peptides. Cyclic GMP pathways regulate several aspects of lung pathophysiology in a number of airway cells. The regulation of this system has not been extensively studied in pulmonary epithelial tissue. 2. We have studied the production of cyclic GMP by suspensions of ovine tracheal epithelial cells in response to activators of soluble guanylyl cyclase (sodium nitroprusside (SNP) and S-nitroso-N-acetyl-penicillamine (SNAP) and particulate guanylyl cyclase (atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP) and E. coli heat stable enterotoxin (STa)). 3. Both 10(-7)-10(-3) M and 10(-7)-10(-3) M SNAP generated a concentration-dependent marked elevation in cyclic GMP production when incubated with 10(-3) M 3-isobutyl-l -methylxanthine (IBMX) (both greater than 25 x baseline values with highest drug concentration). 4. The increase in production of cyclic GMP in response to 10(-6) M SNP and 10(-5) M SNAP was markedly inhibited by both 5 x 10(-5) M haemoglobin (102% and 92% inhibition) and 5 x 10(-5) M methylene blue (82% and 84% inhibition). 5. The increase in cyclic GMP in response to 10(-3) M SNP was measured following co-incubation with the phosphodiesterase inhibitors 10(-7)-10(-3) M IBMX, 10(-7)-10(-4) M milrinone and 10(-7)-10(-4) M SKF 96231. Only 10(-4)-10(-3) M IBMX significantly increased cyclic GMP levels. 6. Cyclic GMP production was also significantly elevated from baseline by 10(-5) M ANP, 10(-5) M BNP, 10(-5) M CNP and 200 iu ml-3 of E. coli STa toxin in the presence of 10(-3) M IBMX. Increases with these natriuretic peptides and STa toxin were smaller in magnitude (2-4 fold) than those seen with SNP and SNAP. CNP was the most potent of the natriuretic peptides studied suggesting type B membrane bound guanylate cyclase is the predominant form expressed. 7. These results suggest that ovine tracheal epithelial cells contain active guanylyl cyclases. The more marked response to SNP and SNAP than to natriuretic peptides suggests that soluble guanylyl cyclase predominates.  相似文献   

13.
1. Rat cultured aortic vascular smooth muscle cells (VSMC) express both cyclic GMP-inhibited cyclic AMP phosphodiesterase (PDE3) and Ro 20-1724-inhibited cyclic AMP phosphodiesterase (PDE4) activities. By utilizing either cilostamide, a PDE3-selective inhibitor, or Ro 20-1724, a PDE4-selective inhibitor, PDE3 and PDE4 activities were shown to account for 15% and 55% of total VSMC cyclic AMP phosphodiesterase (PDE) activity. 2. Treatment of VSMC with either forskolin or 8-bromo-cyclic AMP caused significant concentration- and time-dependent increases in total cellular cyclic AMP PDE activity. Using cilostamide or Ro 20-1724, we demonstrated that both PDE3 and PDE4 activities were increased following forskolin or 8-bromo-cyclic AMP treatment, with a relatively larger effect observed on PDE3 activity. The increase in cyclic AMP PDE activity induced by forskolin or 8-bromo-cyclic AMP was inhibited by actinomycin D or cycloheximide, demonstrating that new mRNA synthesis and protein synthesis were required. An analogue of forskolin which does not activate adenylyl cyclase (1,9-dideoxyforskolin) or an analogue of cyclic GMP (8-bromo-cyclic GMP) did not affect total cyclic AMP PDE activity. 3. Incubation of VSMC with 8-bromo-cyclic AMP for 16 h caused a marked rightward shift in the concentration-response curves for both isoprenaline- and forskolin-mediated activation of adenylyl cyclase. A role for up-regulated cyclic AMP PDE activity in this reduced potency is supported by our observation that cyclic AMP PDE inhibitors (IBMX, cilostamide or Ro 20-1724) partially normalized the effects of isoprenaline or forskolin in treated cells to those in untreated cells. 4. We conclude that VSMC cyclic AMP PDE activity is increased following long-term elevation of cyclic AMP and that increases in PDE3 and PDE4 activities account for more than 70% of this effect. Furthermore, we conclude that increases in cyclic AMP PDE activity contribute to the reduced potency of isoprenaline or forskolin in treated VSMC. These results have implications for long-term use of cyclic AMP PDE inhibitors as therapeutic agents.  相似文献   

14.
1. Endogenous synthesis of tetrahydrobiopterin (BH4) is an essential requirement for cytokine-stimulated nitric oxide (NO) synthesis in rat mesangial cells. GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, is expressed in renal mesangial cells in response to two principal classes of activating signals. These two groups of activators comprise inflammatory cytokines such as interleukin (IL)-1beta and agents that elevate cellular levels of cyclic AMP. 2. We examined the action of the potent anti-inflammatory drug dexamethasone on GTP cyclohydrolase I induction in response to IL-1beta and a membrane-permeable cyclic AMP analogue, N6, O-2'-dibutyryladenosine 3'-5'-phosphate (Bt2cyclic AMP). 3. Nanomolar concentrations of dexamethasone markedly attenuated IL-1beta-induced GTP cyclohydrolase I mRNA steady state level as well as IL-1beta-induced GTP cyclohydrolase I protein expression and enzyme activity. In contrast, dexamethasone did not inhibit Bt2cyclic AMP-triggered increase in GTP cyclohydrolase I mRNA level and protein expression, and low (1 nM) or high (1 and 10 microM) doses of dexamethasone consistently increased Bt2cyclic AMP-induced GTP cyclohydrolase activity. 4. In summary, these results suggest that glucocorticoids act at several levels, critically dependent on the stimulus used, to control GTP cyclohydrolase I expression.  相似文献   

15.
Dopamine (DA) and fencamfamine (FCF) modulatory action on Na,K-ATPase and Mg-ATPase activity were evaluated in rat striatum. DA and FCF induced a decrease in Na,K-ATPase, without affecting Mg-ATPase activity. The effect of FCF was dose-dependent from 10 to 100 microM, with an IC50 of 4.7 x 10(-5) M. Furthermore, the effect of FCF (100 microM) increasing AMPc levels, but not GMPc, was nonadditive with that of DA (10 microM), which is consistent to a common site of action. The 8-bromo-cyclic AMP also induced a specific reduction in the Na,K-ATPase activity. The reduction of Na,K-ATPase induced by FCF (100 microM) was blocked by either SCH 23390 or sulpiride, which are D1 and D2 receptor antagonists. The decrease in striatal NA,K-ATPase activity induced by FCF was blocked by KT 5720, a selective inhibitor of cyclic AMP-dependent protein kinase (PKA), but not by KT 5823, a selective inhibitor of cyclic GMP-dependent protein kinase (PKG). Otherwise, KT 5720 or KT 5823 did not produce any change in Na,K-ATPase or Mg-ATPase activity. These data suggest that FCF reduces Na,K-ATPase activity through cyclic AMP-dependent changes in protein phosphorylation via a PKA mechanism.  相似文献   

16.
To determine the effect of epinephrine and hydrocortisone on lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) production, human whole blood was stimulated with LPS in the presence or absence of these stress hormones. Epinephrine caused a dose-dependent increase in LPS-induced IL-8 production, which was mediated exclusively via beta-adrenergic receptors, as reflected by the facts that beta (but not alpha) receptor blockade reversed the epinephrine effect and beta (but not alpha) receptor stimulation reproduced the epinephrine effect. Further, elevating cellular cyclic AMP (cAMP) concentrations, a known effect of beta-adrenergic stimulation, by addition of dibutyryl cAMP also enhanced LPS-induced IL-8 production. Epinephrine-induced upregulation of IL-10 production masked an even more pronounced stimulating effect of this hormone on IL-8 synthesis, as indicated by the finding that the extent of IL-8 upregulation was greater in the presence of anti-IL-10 than in the absence of anti-IL-10. Hydrocortisone dose-dependently inhibited LPS-induced IL-8 production and reversed epinephrine-induced enhancement of IL-8 production. Epinephrine and hydrocortisone have opposite effects on IL-8 production, which may be relevant for the understanding of endogenous and therapeutic stress hormone influences on IL-8 mediated inflammation.  相似文献   

17.
Intracerebroventricular administration of N6, 2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (db-cyclic AMP) to mice increased high-affinity choline transport (HAChT) into synaptosomal preparations from the hippocampus, striatum, and frontal cortex in a time- dose-, and brain region-dependent manner. Similar observations were made when the cyclic AMP analogue 8-bromo-cyclic AMP, the adenylyl cyclase activator forskolin, and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine were administered. Inhibition of phosphatase 1 and 2A, with okadaic acid, increased basal choline transport and enhanced the response to db-cyclic AMP. The early increase of HAChT activity induced by db-cyclic AMP was blocked by H-7 and H-89, protein kinase A inhibitors, but not by cycloheximide, a protein synthesis inhibitor. Kinetic analysis of the early changes of HAChT revealed an increase in the apparent Vmax without a change of the Km for choline. Hemicholinium-3 (HC-3) binding was not altered when studied 1 h after db-cyclic AMP administration. In contrast, HC-3 binding and HAChT activity were both elevated when estimated 3 h after the treatment, and pretreatment with cycloheximide partially prevented the db-cyclic AMP-induced HAChT rise. As evidence that enhanced HAChT is associated with a direct action of cyclic AMP-dependent pathways on the cholinergic nerve terminals, addition of 8-bromocyclic AMP to isolated hippocampal synaptosomes induced an increase of HAChT that was prevented by H-89. Choline acetyltransferase activity was not affected at any time during the studies. The synthesis of acetylcholine, however, was enhanced 1 h after db-cyclic AMP addition. Our studies show that cyclic AMP-mimetic compounds appear to modulate the choline carrier by a dual mode: an early increase of the maximal velocity without a change of the number of HC-3 binding sites and a late rise of transport that is accompanied by an increase of HC-3 binding. We postulate that HAChT and consequently acetylcholine synthesis in vivo is modulated, in part, by protein kinase A.  相似文献   

18.
The commercial fungicide methyl 1-[(butylamino) carbonyl]-1H-benzimidazol-2-ylcarbamate (benomyl) is teratogenic in rats. Its mode of action is believed to be related to its ability to inhibit the polymerization of brain tubulin. In this study its effects were studied in cultured neuronal cells during differentiation and neurite outgrowth. Mouse NB2a and human SH-SY5Y neuroblastoma cells were induced to differentiate by addition of dibutyryl cyclic AMP and at the same time were exposed to various concentrations of benomyl. Benomyl significantly inhibited neurite outgrowth in both cell lines at concentrations of 10(-8) M and above with IC50 values of 5.9 x 10(-7) M and 1.0 x 10(-6) M in the NB2a and SH-SY5Y cells respectively. The results show that benomyl inhibits neuronal cell differentiation at concentrations likely to be achieved during the development of fetal abnormalities in rats in vivo.  相似文献   

19.
The effects of histamine, Nalpha-dimethylhistamine, 4,5-methylhistamine, Ntau-methylhistamine, pentagastrin, carbachol, and NaF on the adenylate cyclase activity from canine gastric mucosa were investigated in cell-free preparations. In gastric fundic mucosa, histamine (10(-4) M), Nalpha-dimethylhistamine (10(-4) M), 4,5-methylhistamine (10(-4 M), and NaF (10)-2) M) significantly (P less than 0.001) increased adenylate cyclase activity (means+/-SE) by 44.7+/-6.6, 49.4+/-6.7, 34.0+/-6.4, and 572.0+/-100%, respectively, above basal activity. The effect of histamine and Na-dimethyl histamine was dose-dependent. In contrast, other tested agents failed to stimulate the formation of cyclic AMP in gastric fundic mucosa. Metiamide (10(-4) M) blocked the stimulation of fundic mucosa adenylate cyclase by histamine and Nalpha-dimethylhistamine, without significantly altering basal and NaF-induced adenylate cyclase activity. Histamine, however, did not stimulate the adenylate cyclase activity from the gastric antral mucosa. The findings support the proposal that the canine gastric acid response to histamine may be mediated by cyclic AMP formed in response to stimulation of histamine H2-receptors.  相似文献   

20.
1. The relaxant effects of dopamine (DA) on the intrarenal arteries obtained from 6 month old stroke-prone spontaneously hypertensive rats (SHRSP) and age-matched Wistar-Kyoto (WKY) rats were pharmacologically investigated in vitro. 2. DA (10(-7)-3 x 10(-5) mol/L) produced endothelium-independent relaxation on the arterial rings which had been incubated with phenoxybenzamine (2 x 10(-6) mol/L) and precontracted with KCl. 3. DA-induced relaxation was greater in the arterial rings from SHRSP than in those from WKY. SKF 38393 (10(-8)-10(-6) mol/L) partially mimicked DA-produced relaxation in both groups. SCH 23390 dose-dependently inhibited DA-induced relaxation with pD'2 value of 9.33 for SHRSP and of 9.26 for WKY. 4. There were no significant differences between SHRSP and WKY in the relaxation caused by forskolin, dibutyryl cyclic AMP, or 3-isobutyl-1-methylxanthine. 5. These results suggested that DA1 receptor-mediated relaxation was increased in the intrarenal arteries from SHRSP, and this increase might not be associated with altered vasodilation mediated by cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号