首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用反胶束原位复合法制备了银/聚苯胺(Ag/PANI)纳米复合材料,并且探讨了Ag/PANI纳米复合材料的形成机理。通过红外光谱、紫外吸收光谱、X射线衍射、扫描电镜和透射电镜对复合物进行了表征。研究结果表明,Ag/PANI复合材料中Ag为纳米粒子,粒径为50 nm,苯胺自吸附在银纳米粒子表面聚合,形成PANI包覆Ag纳米粒子壳-核结构。Ag纳米粒子在PANI中均匀分散,Ag/PANI复合粒子大部分呈现类球形状的表面形貌,复合粒子粒径较PANI有了明显减小。并提出了Ag/PANI复合材料的形成机制。  相似文献   

2.
以超支化聚(胺-酯)为模板,采用NaBH4直接还原和紫外灯光照射合成了Ag纳米粒子。超支化聚(胺-酯)对Ag纳米粒子形成起着重要的作用。TEM分析表明,Ag纳米粒子形貌为球形结构,分布均匀,粒径约为45 nm(NaBH4还原)和20 nm(紫外灯光照射)。发现在UV-Vis谱图中420 nm左右有Ag纳米粒子特征表面等离子共振吸收峰。FT-IR分析发现Ag纳米粒子和超支化聚(胺-酯)之间有较强的相互作用,超支化聚(胺-酯)对Ag纳米粒子的稳定性起保护作用。  相似文献   

3.
魏永春 《功能材料》2021,(3):3135-3139
采用溶胶-凝胶法制备了TiO2和Ag/TiO2纳米粒子,采用涂覆法制备了TiO2和Ag/TiO2纳米粒子光催化剂基板样品。使用XRD、SEM和拉曼光谱等手段,对TiO2和Ag/TiO2纳米粒子进行了晶格结构和表面形貌研究;通过UV-Vis,研究了TiO2和Ag/TiO2纳米粒子光催化剂基板样品在光催化反应器中对苯酚的光催化降解性能。结果表明,制备的TiO2和Ag/TiO2纳米粒子均为纯净的金红石相,二者表面形貌并没有明显区别,Ag单质粒子成功负载在TiO2纳米材料上;Ag单质粒子的负载,明显增强了TiO2纳米粒子对可见光的吸收,且Ag/TiO2纳米粒子薄膜对苯酚的光催化降解性能明显优于TiO2纳米粒子薄膜;在光催化降解1 h后,TiO2纳米粒子薄膜仅催化降解了溶液中30%(质量分数)的苯酚,且光催化降解出现了饱和趋势,而Ag/TiO2纳米粒子薄膜可催化降解溶液中50%(质量分数)的苯酚,且在光催化降解3 h后,仍未出现饱和趋势。  相似文献   

4.
在涂覆有PVP/AgNO3胶体的聚酰亚胺(PI)薄膜上,采用激光辐射法将Ag+还原成Ag纳米粒子并嵌入到PI表面,从而制备出聚酰亚胺/纳米Ag复合膜。通过XPS、AFM、SEM等表征手段研究了复合膜表面的化学成分、以及激光通量和PVP/AgNO3配比对纳米银粒子形貌的影响。结果表明,激光通量的提高可使聚酰亚胺/纳米Ag复合膜上的纳米Ag粒子产生一定程度的定向排列;调节PVP/AgNO3的配比,可大致控制Ag粒子尺寸在25~160nm间变化。  相似文献   

5.
Ag纳米材料具有独特的光学性、高导电性、高催化性和高抗菌性,在光电、催化及抗菌等领域中占有重要地位,而纳米Ag各种优异性能依赖于其尺寸、形貌和结构等.因此,纳米Ag可控制备的研究成为热点.按照粒子维度,将纳米Ag分为零维、一维和二维结构,对不同结构Ag纳米材料的合成方法及研究现状做简要概述,并总结Ag纳米材料的应用进展.  相似文献   

6.
Ni-P/非金属纳米化学镀溶液中纳米粒子容易团聚,镀液难以保持稳定性.在化学镀Ni-P溶液中添加纳米银粒子,在钢铁基体上制备了Ni-P/Ag纳米复合镀层.用显微硬度计、金相显微镜等技术分析了镀层的厚度、硬度和表面形貌,用磨损试验机研究了镀层的耐磨损性能.结果表明:银纳米粒子在镀液中的含量为1.0×10-7mol/,L,银纳米粒子加快了镀层的沉积速度,使纳米复合镀层厚度增加;在相同的施镀条件下,Ni-P/Ag纳米复合镀层比Ni-P镀层具有更高的硬度和更好的耐磨损性能.  相似文献   

7.
通过氧化还原法制备了粒径处于50~65nm的球形银(Ag)纳米粒子,采用扫描电子显微镜(SEM)分析其形貌及单分散性。在Ag纳米粒子基础上采用沉积自组装法合成了有效粒径为80.8nm的Ag/牛血清白蛋白(BSA)核壳结构纳米粒子。结合SEM、透射电子显微镜(TEM)、X射线衍射(XRD)和荧光发射光谱(FL)分析发现,BSA有效地包覆在Ag纳米粒子的外层,Ag/BSA核壳结构纳米粒子单分散性良好,加入Ag/BSA核壳结构纳米粒子的聚苯乙烯(PS)的荧光强度从100增强到6 000。研究结果表明,BSA隔离层对位于Ag表面附近的PS分子的荧光强度有显著的增强效应。  相似文献   

8.
采用紫外光(323.5 nm)激发,观察到了Ag-BaO纳米薄膜相对于纳米Ag膜室温条件下在可见光波段的光致荧光增强现象。两种纳米薄膜的荧光发射主要来自于Ag纳米粒子的贡献,埋藏于BaO介质中的Ag纳米粒子的荧光增强特性起源于非线性光学特性的增强。有效控制介质复合薄膜中Ag纳米粒子生长,将有可能最大限度地增强荧光,这将进一步拓展Ag-BaO纳米薄膜这种新型复合薄膜材料的实际应用范围。  相似文献   

9.
采用一步还原法和螯合法制备Ag/PAN纳米纤维膜。采用SEM,UV,XRD,FT-IR傅里叶变换红外光谱仪对该纤维形貌,银粒子晶型、尺寸、官能团进行表征。得知两种方法都可制备出嵌有(或附着)纳米银颗粒的PAN纳米纤维膜,银粒子的粒径可以达10nm,且经过比较,Ag/PAN膜经过还原处理后,表面Ag粒子的含量更高,分布更均匀。  相似文献   

10.
采用苯胺为分散剂合成纳米银胶溶液,并在此基础上引发苯胺的原位复合,制备出银/聚苯胺(Ag/PANI)纳米复合材料。通过傅里叶变换红外光谱仪、X射线衍射分析仪、扫描电镜、透射电镜和电化学分析仪对产物进行了分析与检测。研究结果表明,Ag/PANI纳米复合材料中形成了聚苯胺在外、银纳米粒子在内的包覆结构,纳米复合粒子为类球形状形貌。引入纳米银粒子后,制备的Ag/PANI纳米复合材料的电化学活性和比容量较PANI有了很大提高。Ag/PANI纳米复合材料的腐蚀电流密度为72.1μA/cm2,比PANI的腐蚀电流密度106μA/cm2降低了33.9μA/cm2,纳米复合材料防腐性能得到显著提高。  相似文献   

11.
Alloyed gold/silver nanoparticles with a core/shell structure are produced from preformed gold and silver nanoparticles during ultrasonic treatment at different intensities in water and in the presence of surface‐active species. Preformed gold nanoparticles with an average diameter of 15 ± 5 nm are prepared by the citrate reduction of chloroauric acid in water, and silver nanoparticles (38 ± 7 nm) are formed after reduction of silver nitrate by sodium borohydride. Bare binary gold/silver nanoparticles with a core/shell structure are formed in aqueous solution after 1 h of sonication at high ultrasonic intensity. Cationic‐surfactant‐coated preformed gold and silver nanoparticles become gold/silver‐alloy nanoparticles after 3 h of sonication in water at 55 W cm?2, whereas only fusion of isolated gold and silver nanoparticles is observed after ultrasonic treatment in the presence of an anionic surfactant. As the X‐ray diffraction profile of alloyed gold/silver nanoparticles reveals split, shifted, and disappeared peaks, the face‐centered‐cubic crystalline structure of the binary nanoparticles is defect‐enriched by temperatures that can be as high as several thousand Kelvin inside the cavitation bubbles during ultrasonic treatment.  相似文献   

12.
Stable water-dispersible silver nanoparticles with a narrow size distribution are obtained by light-assisted spontaneous reduction of silver nitrate with gelatin, which acts as both the reducing and the stabilizing agents, in water. The formation mechanism of the silver nanoparticles involves an in-situ conversion of Ag(+)-gelatin aggregates to gelatin-stabilized silver nanoparticles via a Ag(+)-mediated oxidation of primary amine groups of the gelatin to carboxylic acid groups. The resultant silver nanoparticles are well within the quantum size domain (10 nm). In addition, the nanoparticles are stable in aqueous solutions and can be separated easily by simple pH adjustment.  相似文献   

13.
Xinkui Wang 《Materials Letters》2008,62(28):4366-4368
Nearly monodisperse silver nanoparticles were prepared in a two-phase water-cyclohexane system. Aqueous silver nitrate was reduced by the product of the reaction of aqueous hydrazine with benzyl aldehyde in cyclohexane to form, in the presence of oleic acid, cyclohexane-soluble silver nanoparticles. The silver nanoparticles were examined by transmission electron microscopy (TEM), UV-visible spectroscopy (UV-vis), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The nanoparticles are relatively monodisperse (diameter less than 6 nm) and have good stability in cyclohexane due to the oleic acid adsorbed on their surfaces. These silver nanoparticles were successfully assembled into a powder with a face-centered-cubic structure by slow evaporation of the solvent. With some change in particle size, these silver nanoparticles could be transferred from cyclohexane to water by the addition of cetyltrimethylammonium bromide.  相似文献   

14.
Silver nanoparticle/bis(o-phenolpropyl)silicone composites have been synthesized by the reduction of silver nitrate with bis(o-phenolpropyl)silicone BPPS [(o-phenolpropyl)2(SiMe2O)n, n = 2, 3, 8, 236]. TEM and FE-SEM data clearly show that the silver nanoparticles with the size of < 20 nm are well dispersed throughout the BPPS matrix in the composites. XRD patterns are consistent with those for multicrystalline silver. The size of silver nanoparticles increased with increasing the relative molar concentration of silver salts added. It was found that in the absence of BPPS, most of the silver nanoparticles undergo macroscopic precipitation by agglomeration, indicating that BPPS is essential to stabilize the silver nanoparticles.  相似文献   

15.
The Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. The work presented here with the biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics. The aqueous silver ions when exposed to Moringa oleifera leaf extract are reduced resulting in silver nanoparticles demonstrating the biosynthesis. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. TEM analysis shows a dispersion of the nanoparticles in a range of 5-80 nm with the average around 46 nm and are crystallized in face centred cubic symmetry. To show that these biosynthesized silver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route, we carried out the Z-scan studies with a 6 ns, 532 nm pulsed laser. We estimated the nonlinear absorption coefficient and compare it with the literature values of the nanoparticles synthesized through chemical route. The silver nanoparticles suspended in solution exhibited reverse saturable absorption with optical limiting threshold of 100 mJ/cm2.  相似文献   

16.
The formation of silver nanoparticle/bis(o-phenolpropyl)silicone composites have been promoted by the addition of chloroplatinic acid (<2 wt%) to the reaction of silver nitrate with bis(o-phenolpropyl)silicone BPPS [(o-phenolpropyl)2(SiMe2O)n, = 2, 3, 8, 236]. TEM and FE-SEM data exhibit that the silver nanoparticles having the size of <20 nm are well dispersed throughout the BPPS matrix in the composites. XRD patterns are consistent with those for polycrystalline silver. The addition of small amount of platinum to the silver accelerated the rate of composite formation by forming a Ag-Pt bimetallic alloy. The size of silver nanoparticles increased with increasing the relative molar concentration of silver salts added with respect to BPPS. However, the addition of platinum (1-5 wt%) to the AgNO3-BPPS mixture did not affect the size distribution of silver nanoparticles appreciably. It was found that in the absence of BPPS, most of the silver nanoparticles undergo macroscopic precipitation by agglomeration, indicating that BPPS is essential to stabilize the silver nanoparticles by coordination.  相似文献   

17.
Multi-walled carbon nanotube/silver nanoparticles hybrid materials were easily synthesized by a mixing method of acid-oxidized nanotubes and the colloidal dispersion of silver nanoparticles. The silver colloidal dispersion was pre-synthesized by a chemical reduction of silver nitrate by dimethyl sulfoxide in the presence of trisodium citrate dihydrate as capping agents. In the mixing method, approx 5.0 nm diameters of silver nanoparticles with face-centered cubic crystal structures are highly dispersed on the acid-oxidized nanotubes due to the surface reactivity resulting from the enhancement of oxygen-containing functional groups. The results emphasize that the anchoring effect of the functionalized nanotube surface on silver nanoparticles originates from electrostatic metal-support interactions.  相似文献   

18.
The photoluminescence (PL) from rhodamine (RHO6G) dye dispersed in ethanol has been studied in the presence of different amounts of citrate stabilized silver nanoparticles of size, ∼10 nm. Enhancement as well as quenching of luminescence intensity has been observed and it was found that luminescence intensity can be tuned by adding various amounts of silver nanoparticles to the RHO6G dye dispersion. The luminescence spectra of dye consist of two peaks at 440 nm and 550 nm. Peak at 440 nm shows an enhancement in intensity at all the concentrations of added silver nanoparticles with the maximum intensity for dye with 0.25 ml silver nanoparticles (82% enhancement in the luminescence intensity). PL intensity of intense peak at 550 nm of dye molecules was found to be quenched in presence of silver nanoparticles and maximum quenching was found to be 41% for the dye with 1 ml silver nanoparticles. However, for lowest concentration of silver nanoparticles viz. (0.01 ml), enhancement in intensity was observed (13% enhancement than the dye molecules). The quenching as well as enhancement in the intensity can be understood by considering the possibility of three different phenomena. It has been reported earlier that when metal nanoparticles are in close proximity to the fluorophores, quenching of luminescence occurs, whereas when metal nanoparticles are located at certain distance, enhancement in luminescence is observed. This effect has been explained by coupling of surface plasmon resonance from metal nanoparticles with fluorophore, resulting in the increase of excitation and emission rate of the fluorophore in the localized electromagnetic field. The quenching and enhancement of luminescence intensity of the dye molecules can also be explained as the transfer of electrons from dye to the silver nanoparticles and to an extent it can be attributed to the aggregation of dye molecules upon addition of silver nanoparticles.  相似文献   

19.
Silver nanoparticles dispersed in polyaniline matrixes coated on titanium substrate, as a novel electrode, was easily synthesized by electro-polymerization of aniline on titanium and then electrodeposited silver nanoparticles on PAni electrode. The electrochemical behavior and electro-catalytic activity of silver nanoparticles/PAni/Ti electrodes were characterized by cyclic voltammetry. The morphology of silver nanoparticles on PAni/Ti electrodes were characterized by scanning electron microscopy and energy-dispersive X-ray techniques, respectively. Results indicated that silver nanoparticles with a diameter of about 40–70 nm were homogeneously dispersed on the surface of polyaniline film. The silver nanoparticles/PAni/Ti electrodes were examined for electro-catalytic activity toward oxidation of hydrazine. The results show that these modified electrodes are highly active for electro-catalytic oxidation of hydrazine.  相似文献   

20.
A seeding growth approach to the preparation of silver nanoparticles with a controllable size was developed. It contained a two-step reaction: the first step was gold seed clusters quickly generated by a chemical reaction using sodium borohydride as a reducing reagent; the second one was controllable silver nanoparticles were grown at the mild condition by using the mixed reducing reagents (hydroxylamine hydrochloride and sodium hydroxide) to form a buffer system. The gold core was beneficial for the crystalline of silver cations to form the nanoparticles and the buffer system which was composed of hydroxylamine hydrochloride and sodium hydroxide, and was helpful for controlling the size and shape of the as-prepared silver nanoparticles. These as-prepared nanoparticles were characterised by X-ray powder diffraction, UV-Vis spectroscopy (UV-Vis) and transmission electron microscopy along with energy dispersive X-ray spectroscopy. The results indicated that the obtained silver nanoparticles are highly crystallised with an average diameter around 10?nm. The content of gold seeds and the mild reaction rate controlled by the buffer system were considered to be key factors in the control of silver nanoparticles’ morphology and size. A possible mechanism of the silver nanoparticles formed was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号