首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pintar KD  Slawson RM 《Water research》2003,37(8):1805-1817
The establishment of ammonia-oxidizing bacteria (AOB), a group of autotrophic microorganisms responsible for nitrification in chloraminated distribution systems, was studied in a bench-scale distribution system. The potential significance of temperature and disinfectant residual associated with chloramination in full-scale drinking water distribution systems was assessed. Biofilm development was primarily monitored using AOB abundance and nitrite concentrations. The bench-scale system was initially operated under typical North American summer (22 degrees C) and fall (12 degrees C) temperatures, representing optimal and less optimal growth ranges for these microorganisms. Additional experimentation investigated AOB establishment at a suboptimal winter distribution system temperature of 6 degrees C. The effect of chloramine residual on AOB establishment was studied at higher (0.2-0.6mg/L) and lower (0.05-0.1mg/L) ranges, using a 3:1 (w/w) chlorine:ammonia dosing ratio. Conditions were selected to represent those typically found in a North American distribution system, in areas of low flow and longer retention times, respectively. Finally, the effect of a free chlorine residual on an established nitrifying biofilm was briefly examined. Results clearly indicate that AOB development occurs at all examined temperatures, as well as at selected monochloramine residuals. The maintenance of a disinfectant residual was difficult at times, but was more inhibitory to the nitrifying biofilm than the lower temperature. It can be concluded from the data that nitrification may not be adequately inhibited during the winter months, which may result in more advanced stages of nitrification the following season. Free chlorination can be effective in controlling AOB activity in the short term, but may not prevent reestablishment of a nitrifying biofilm upon return to chloramination.  相似文献   

2.
The interaction of chemical, physical and biological factors that affect the fate, transport and redox cycling of manganese in engineered drinking water systems is not clearly understood. This research investigated the presence of Mn-oxidizing and -reducing bacteria in conventional water treatment plants exposed to different levels of chlorine. Mn(II)-oxidizing and Mn(IV)-reducing bacteria, principally Bacillus spp., were isolated from biofilm samples recovered from four separate drinking water systems. Rates of Mn-oxidation and -reduction for selected individual isolates were represented by pseudo-first-order kinetics. Pseudo-first-order rate constants were obtained for Mn-oxidation (range: 0.106-0.659 days−1), aerobic Mn-reduction (range: 0.036-0.152 days−1), and anaerobic Mn-reduction (range: 0.024-0.052 days−1). The results indicate that microbial-catalyzed Mn-oxidation and -reduction (aerobic and anaerobic) can take place simultaneously in aqueous environments exposed to considerable oxygen and chlorine levels and thus affect Mn-release and -deposition in drinking water systems. This has important implications for Mn-management strategies, which typically assume Mn-reduction is not possible in the presence of chlorine and oxidizing conditions.  相似文献   

3.
Drinking water biofilms are complex microbial systems mainly composed of clusters of different size and age. Atomic force microscopy (AFM) measurements were performed on 4, 8 and 12 weeks old biofilms in order to quantify the mechanical detachment shear stress of the clusters, to estimate the biofilm entanglement rate ξ. This AFM approach showed that the removal of the clusters occurred generally for mechanical shear stress of about 100 kPa only for clusters volumes greater than 200 μm3. This value appears 1000 times higher than hydrodynamic shear stress technically available meaning that the cleaning of pipe surfaces by water flushing remains always incomplete. To predict hydrodynamic detachment of biofilm clusters, a theoretical model has been developed regarding the averaging of elastic and viscous stresses in the cluster and by including the entanglement rate ξ. The results highlighted a slight increase of the detachment shear stress with age and also the dependence between the posting of clusters and their volume. Indeed, the experimental values of ξ allow predicting biofilm hydrodynamic detachment with same order of magnitude than was what reported in the literature. The apparent discrepancy between the mechanical and the hydrodynamic detachment is mainly due to the fact that AFM mechanical experiments are related to the clusters local properties whereas hydrodynamic measurements reflected the global properties of the whole biofilm.  相似文献   

4.
Ozonation followed by granular activated carbon (GAC) is one of the advanced drinking water treatments. During GAC treatment, ammonia can be oxidized by ammonia-oxidizing microorganisms associated with GAC. However, there is little information on the abundance and diversity of ammonia-oxidizing microorganisms on GAC. In this study, the nitrification activity of GAC and the settlement of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in GAC were monitored at a new full-scale advanced drinking water treatment plant in Japan for 1 year after plant start-up. Prechlorination was implemented at the receiving well for the first 10 months of operation to treat ammonia in raw water. During this prechlorination period, levels of both AOA and AOB associated with GAC were below the quantification limit. After prechlorination was stopped, 105 copies g-dry−1 of AOA amoA genes were detected within 3 weeks and the quantities ultimately reached 106-107 copies g-dry−1, while levels of AOB amoA genes still remained below the quantification limit. This observation indicates that AOA can settle in GAC rapidly without prechlorination. The nitrification activity of GAC increased concurrently with the settlement of AOA after prechlorination was stopped. Estimation of in situ cell-specific ammonia-oxidation activity for AOA on the assumption that only AOA and AOB determined can contribute to nitrification suggests that AOA may account for most of the ammonia-oxidation. However, further validation on AOB contribution is required.  相似文献   

5.
The drinking water industry is closely examining options to maintain disinfection in distribution systems. In particular this research compared the relative efficiency of the chlorite ion (ClO2-) to chlorine dioxide (ClO2) for biofilm control. Chlorite levels were selected for monitoring since they are typically observed in the distribution system as a by-product whenever chlorine dioxide is applied for primary or secondary disinfection. Previous research has reported the chlorite ion to be effective in mitigating nitrification in distribution systems. Annular reactors (ARs) containing polycarbonate and cast iron coupons were used to simulate water quality conditions in a distribution system. Following a 4 week acclimation period, individual ARs operated in parallel were dosed with high (0.25mg/l) and low (0.1mg/l) chlorite concentrations and with high (0.5 mg/l) and low (0.25mg/l) chlorine dioxide concentrations, as measured in the effluent of the AR. Another set of ARs that contained cast iron and polycarbonate coupons served as controls and did not receive any disinfection. The data presented herein show that the presence of chlorite at low concentration levels was not effective at reducing heterotrophic bacteria. Log reductions of attached heterotrophic bacteria for low and high chlorite ranged between 0.20 and 0.34. Chlorine dioxide had greater log reductions for attached heterotrophic bacteria ranging from 0.52 to 1.36 at the higher dose. The greatest log reduction in suspended heterotrophic bacteria was for high dose of ClO2 on either cast iron or polycarbonate coupons (1.77 and 1.55). These data indicate that it would be necessary to maintain a chlorine dioxide residual concentration in distribution systems for control of microbiological regrowth.  相似文献   

6.
Ni BJ  Fang F  Xie WM  Yu HQ 《Water research》2008,42(16):4261-4270
The autotrophs in activated sludge play an important role in biological wastewater treatment, especially in the nitrification process. Compared with the heterotrophs in activated sludge, information about the growth, maintenance, and product formation of the autotrophs is still sparse. In this work both experimental and modeling approaches are used to investigate the growth, nitrite inhibition, maintenance, and formation of extracellular polymeric substances (EPS) and soluble microbial products (SMP) of the autotrophs, with nitrite-oxidizing bacteria (NOB) in activated sludge as an example. The unified theory for EPS and SMP is integrated into our model to describe the microbial product formation of the NOB. Extensive experiments were carried out using the NOB-enriched in a sequencing batch reactor for the calibration and validation of the developed model. Results show that the NOB spend a considerable amount of energy on maintenance processes. Their apparent growth yield is estimated to be 0.044 mg COD biomass mg−1 N. The model simulations reveal that the concentrations of EPS and SMP in the NOB-enriched culture initially increase, but later decrease gradually, and that the SMP formed in the nitrite oxidation process are biodegradable.  相似文献   

7.
This study used annular reactors (AR) to investigate, under controlled laboratory conditions, the effects of temperature and biodegradable organic matter (BOM) on the free chlorine residual needed to control biofilm accumulation, as measured by heterotrophic plate count (HPC) bacteria. Biofilm was grown on PVC coupons, initially in the absence of chlorine, at 6, 12, and 18 degrees C, in the presence and absence of a BOM supplement (250 microg C/L) added as acetate. During the early stages of chlorine addition, when no measurable free chlorine residual was present, a reduction in biofilm HPC numbers was observed. Subsequently, once sufficient chlorine was added to establish a residual, the biofilm HPC numbers expressed as log CFU/cm2 fell exponentially with the increase in free chlorine residual. Temperature appeared to have an important effect on both the chlorine demand of the system and the free chlorine residual required to control the biofilm HPC numbers to the detection limit (3.2 Log CFU/cm2). For the water supplemented with BOM, a strong linear correlation was found between the temperature and the free chlorine residual required to control the biofilm. At 6 degrees C, the presence of a BOM supplement appeared to substantially increase the level of free chlorine residual required to control the biofilm. The results of these laboratory experiments provide qualitative indications of effects that could be expected in full-scale systems, rather than to make quantitative predictions.  相似文献   

8.
Li J  McLellan S  Ogawa S 《Water research》2006,40(16):3023-3028
Biological filters combining microbial activity and rapid sand filtration are used in drinking water treatment plants for enhanced biodegradable organic matters (BOM) removal. Biofilms formed on filter media comprised of bacteria enclosed in a polymeric matrix are responsible for the adsorption of BOM and attachment of planktonic microorganisms. This study investigated the removal of Escherichia coli cells injected into laboratory-scale biofilters and the role of biofilm in retaining the injected E. coli. Green fluorescent protein was used as a specific marker to detect and quantify E. coli in the biofilms. About 35% of the total injected E. coli cells were observed in the filter effluents, when initial cell concentrations were measured at 7.4 x 10(6) CFU/mL and 1.6 x 10(7) CFU/mL in two separate experiments. The results from real-time PCR and plate count analysis indicated that 95% of the E. coli retained inside the filters were either non-viable or could not be recovered by colony counting techniques. Injected cells were unevenly distributed inside the filter with more than 70% located at the top 1/5 of the filter. Images obtained from an epifluorescent microscope showed that E. coli cells were embedded inside the biofilm matrix and presented mainly as microcolonies intertwined with other microorganisms, which was consistent with findings from standard plate count methods and qPCR.  相似文献   

9.
Cho DH  Kong SH  Oh SG 《Water research》2003,37(2):402-408
In many drinking water treatment plants, the chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of trihalomethanes (THMs) such as chloroform, dichlorobromomethane, chlorodibromomethane and bromoform. In this study, headspace-solid-phase microextraction (HS-SPME, 85 microm carboxen/polydimethylsiloxane fiber) technique was applied for the analysis of THMs in drinking water. The effects of experimental parameters such as kinds of SPME fiber, the volume ratio of sample to headspace, the addition of salts, magnetic stirring, extraction temperature, extraction time and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The results of THMs from the survey of Seongnam (Korea) drinking water samples showed that the highest total trihalomethane and chloroform were 24.03 and 13.34 microg/l, which were well within the Korean drinking water quality standard of 100 and 80 microg/l, respectively.  相似文献   

10.
Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15 min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing.  相似文献   

11.
Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100 mg L−1 solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5 M ammonia and 0.36 M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.  相似文献   

12.
Rotaviruses have been implicated as a major cause of childhood and traveler's diarrhea in developing countries. Since water is known to be a vehicle of transmission of other enteric viruses, we sought to determine if water could play a role in the transmission of rotavirus infections in a developing nation by applying recently developed techniques for the concentration of viruses from tapwater and environmental (lake, river, ocean and aqueduct) water in Mexico. In an initial survey during the rainy season in August 1978, rotavirus was detected in 10 of 10 drinking water samples and coxsackie B4 or B6 virus in 5 of 10. In a larger survey during the dry season in December 1979, rotavirus was recovered from 3 and enteric viruses from 8 of 21 drinking water samples. Water quality data, available for the 1979 survey, indicated that while many tapwater samples did not meet U.S. coliform standards, some samples containing infectious virus did. Our data suggest that current bacteriological water quality standards for potable water do not reflect viral contamination.  相似文献   

13.
The objective of this work was to elucidate the disinfectant susceptibility of Bacillus anthracis Sterne (BA) and a commercial preparation of Bacillus thuringiensis (BT) spores associated with a simulated drinking water system. Biofilms composed of indigenous water system bacteria were accumulated on copper and polyvinyl chloride (PVC) pipe material surfaces in a low-flow pipe loop and uniformly mixed tank reactor (CDC biofilm reactor). Application of a distributed shear during spore contact resulted in approximately a 1.0 and 1.6 log10 increase in the number of spores associated with copper and PVC surfaces, respectively. Decontamination of spores in both free suspension and after association with biofilm-conditioned pipe materials was attempted using free chlorine and monochloramine. Associated spores required 5- to 10-fold higher disinfectant concentrations to observe the same reduction of viable spores as in suspension. High disinfectant concentrations (103 mg/L free chlorine and 49 mg/L monochloramine) yielded less than a 2-log10 reduction in viable associated spores after 60 min. Spores associated with biofilms on copper surfaces consistently yielded higher Ct values than PVC.  相似文献   

14.
Drinking water quality is routinely monitored in the distribution network but not inside households at the point of consumption. Fluctuating temperatures, residence times (stagnation), pipe materials and decreasing pipe diameters can promote bacterial growth in buildings. To test the influence of stagnation in households on the bacterial cell concentrations and composition, water was sampled from 10 separate households after overnight stagnation and after flushing the taps. Cell concentrations, measured by flow cytometry, increased (2-3-fold) in all water samples after stagnation. This increase was also observed in adenosine tri-phosphate (ATP) concentrations (2-18-fold) and heterotrophic plate counts (4-580-fold). An observed increase in cell biovolume and ATP-per-cell concentrations furthermore suggests that the increase in cell concentrations was due to microbial growth. After 5 min flushing of the taps, cell concentrations and water temperature decreased to the level generally found in the drinking water network. Denaturing gradient gel electrophoresis also showed a change in the microbial composition after stagnation. This study showed that water stagnation in household pipes results in considerable microbial changes. While hygienic risk was not directly assessed, it emphasizes the need for the development of good material validation methods, recommendations and spot tests for in-house water installations. However, a simple mitigation strategy would be a short flushing of taps prior to use.  相似文献   

15.
J. Lee  C.S. Lee  C.J. Maute 《Water research》2010,44(17):5050-5058
Microorganisms in drinking water sources may colonize in gastrointestinal (GI) tracts and this phenomenon may pose a potential health risk especially to immunocompromised population. The microbial community diversity of the drinking water was compared with the GI tracts of the mice using phylogenetic and statistical analyses of 16S rRNA gene sequences. A group of germ-free mice were fed with drinking water from public water supply that passed through an automated watering system with documented biofilm accumulation. From drinking water and GI tracts of the germ-free mice, 179 bacteria were isolated and 75 unique 16S rRNA gene phylotypes were sequenced as operational taxonomic unit (OTU, >97% similarity). Three major groups of the genus Acidovorax (21%), Variovorax (42%) and Sphingopyxis (15%) were found in drinking water. Three major groups of the genus Ralstonia (24%), Staphylococcus (20%) and Bosea (22%) were found in GI tracts. Ralstonia (6%, 24%), Sphingopyxis (15%, 2%), Bacillus (3%, 5%), Escherichia coli (3%, 2%) and Mesorhizobium (3%, 5%) were found in both sources - drinking water and GI tract. A lineage-per-time plot shows that the both bacterial communities have convex shape lines, suggesting an excess of closely related ecotypes. A significant FST test (0.00000-0.00901) coupled with an insignificant P test (0.07-0.46) implies that the tree contained several clades of closely related bacteria. Both phylogenetic and statistical results suggest a correlation between the bacterial communities originating in the drinking water and those associated with the GI tracts. The GI tract showed a higher genetic diversity than the drinking water, but a similar lineage-per-time plot was obtained overall. It means a sudden evolutionary transformation and colonization occurred with high selective forces.  相似文献   

16.
This paper investigates the characteristics of dissolved organic nitrogen (DON) in raw water from the Huangpu River and also in water undergoing treatment in the full-scale Yangshupu drinking water treatment plant (YDWTP) in Shanghai, China. The average DON concentration of the raw water was 0.34 mg/L, which comprised a relatively small portion (~ 5%) of the mass of total dissolved nitrogen (TDN). The molecular weight (MW) distribution of dissolved organic matter (DOM) was divided into five groups: > 30, 10-30, 3-10, 1-3 and < 1 kDa using a series of ultrafiltration membranes. Dissolved organic carbon (DOC), UV absorbance at wavelength of 254 nm (UV254) and DON of each MW fraction were analyzed. DON showed a similar fraction distribution as DOC and UV254. The < 1 kDa fraction dominated the composition of DON, DOC and UV254 as well as the major N-nitrosodimethylamine formation potential (NDMAFP) in the raw water. However, this DON fraction cannot be effectively removed in the treatment line at the YDWTP including pre-ozonation, clarification and sand filtration processes. The results from linear regression analysis showed that DON is moderately correlated to DOC, UV254 and trihalomethane formation potential (FP), and strongly correlated to haloacetic acids FP and NDMAFP. Therefore, DON could serve as a surrogate parameter to evaluate the reactivity of DOM and disinfection by-products FP.  相似文献   

17.
The occurrence of 24 amines within a full scale drinking water treatment plant that used chlorinated agents as disinfectants was evaluated for the first time in this research. Prior to any treatment (raw water), aniline, 3-chloroaniline, 3,4-dichloroaniline and N-nitrosodimethylamine were detected at low levels (up to 18 ng/L) but their concentration increased ∼10 times after chloramination while 9 new amines were produced (4 aromatic amines and 5 N-nitrosamines). Within subsequent treatments, there were no significant changes in the amine levels, although the concentrations of 2-nitroaniline, N-nitrosodimethylamine and N-nitrosodiethylamine increased slightly within the distribution system. Eleven of the 24 amines studied were undetected either in the raw and in the treatment plant samples analysed. There is an important difference in the behaviour of the aromatic amines and N-nitrosamines with respect to water temperature and rainfall events. Amine concentrations were higher in winter due to low water temperatures, this effect being more noticeable for N-nitrosamines. Aromatic amines were detected at their highest concentrations (especially 3,4-dichloroaniline and 2-nitroaniline) in treated water after rainfall events. These results may be explained by the increase in the levels of amine precursors (pesticides and their degradation products) in raw water since the rainfall facilitated the transport of these compounds from soil which was previously contaminated as a result of intensive agricultural practices.  相似文献   

18.
Indigenous bacteria are essential for the performance of drinking water biofilters, yet this biological component remains poorly characterized. In the present study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the first six months of operation. GAC particles were sampled from four different depths (10, 45, 80 and 115 cm) and attached biomass was measured with adenosine tri-phosphate (ATP) analysis. The attached biomass accumulated rapidly on the GAC particles throughout all levels in the filter during the first 90 days of operation and maintained a steady state afterward. Vertical gradients of biomass density and growth rates were observed during start-up and also in steady state. During steady state, biomass concentrations ranged between 0.8-1.83 x 10−6 g ATP/g GAC in the filter, and 22% of the influent dissolved organic carbon (DOC) was removed. Concomitant biomass production was about 1.8 × 1012 cells/m2h, which represents a yield of 1.26 × 106 cells/μg. The bacteria assimilated only about 3% of the removed carbon as biomass. At one point during the operational period, a natural 5-fold increase in the influent phytoplankton concentration occurred. As a result, influent assimilable organic carbon concentrations increased and suspended bacteria in the filter effluent increased 3-fold as the direct consequence of increased growth in the biofilter. This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilters.  相似文献   

19.
Disinfection byproducts (DBPs) in municipal supply water are a concern because of their possible risks to human health. Risk assessment studies often use DBP data in water distribution systems (WDS). However, DBPs in tap water may be different because of stagnation of the water in plumbing pipes (PP) and heating in hot water tanks (HWT). This study investigated occurrences and developed predictive models for DBPs in the PP and the HWT of six houses from three municipal water systems in Quebec (Canada) in a year-round study. Trihalomethanes (THMs) in PP and HWT were observed to be 1.4-1.8 and 1.9-2.7 times the THMs in the WDS, respectively. Haloacetic acid (HAAs) in PP and HWT were observed to be variable (PP/WDS = 0.23-2.24; HWT/WDS = 0.53-2.61). Using DBPs occurrence data from these systems, three types of linear models (main factors; main factors, interactions and higher orders; logarithmic) and two types of nonlinear models (three parameters Logistic and four parameters Weibull) were investigated to predict DBPs in the PP and HWT. Significant factors affecting DBPs formation in the PP and HWT were identified through numerical and graphical techniques. The R2 values of the models varied between 0.77 and 0.96, indicating excellent predictive ability for THMs and HAAs in the PP and the HWT. The models were found to be statistically significant. The models were validated using additional data. These models can be used to predict DBPs increase from WDS (water entry point of house) to the PP and HWT, and could thereby help gain a better understanding of human exposure to DBPs and their associated risks.  相似文献   

20.
Emissions of fuel components from boating use on multiple-use lakes and reservoirs are of high concern with regard to the drinking water supply from such water bodies. We report results of a detailed study on the occurrence, sources and fate of aromatic hydrocarbons and methyl tert-butyl ether (MTBE) in a typical holomictic lake, Lake Zurich, that supplies drinking water for the largest Swiss city. Emphasis of the investigation was on the fuel oxygenate MTBE, which was found in concentrations up to 1.4 microg/L in the epilimnion and up to 0.05microg/L in the hypolimnion of the lake. The concentration difference was due to the stratification of the lake during the boating season with very limited water exchange across the thermocline. MTBE and BTEX nearly completely volatilized before vertical lake mixing occurred in winter. Spatial and temporal variations of MTBE concentrations in the lake were observed and successfully predicted using two complementary box models (MASAS Light and Aquasim). The drinking water supply from holomictic lakes is not at risk for the scenarios studied if water is extracted from well below the thermocline. Since emissions of unburned gasoline into such water bodies are caused predominantly by boating activities, restrictions of highly emitting two-stroke engines could substantially reduce the MTBE and BTEX load of the epilimnion during the boating season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号