首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crack growth behavior of X65 pipeline steel at free corrosion potential in near-neutral pH soil environment under a CO2 concentration gradient inside a disbonded coating was studied. Growth rates were found to be highest at the open mouth of the simulated disbondment where CO2 concentrations, hence local hydrogen concentration in the local environment, was highest. Careful analysis of growth rate data using a corrosion-fatigue model of the form ΔK α /K max β /f γ , where (1/f γ ) models environmental contribution to growth, revealed that environmental contribution could vary by up to a factor of three. Such intense environmental contribution at the open mouth kept the crack tip atomically sharp despite the simultaneous occurrence of low-temperature creep and crack tip dissolution, which are the factors that blunt the crack tip. At other locations where environmental enhancement was lower, significant crack tip blunting attributed to both low-temperature creep and crack tip dissolution was observed. These factors both led to lower crack growth rates away from the open mouth.  相似文献   

2.
This investigation was initiated to provide governing equations for crack initiation, crack growth, and service life prediction of pipeline steels in near-neutral pH (NNpH) environments. This investigation has focused on the crack initiation and early-stage crack growth. The investigation considered a wide range of conditions that could lead to crack initiation, crack dormancy, and crack transition from a dormant state to active growth. It is concluded that premature rupture caused by stress cracking at a service life of about 20 to 30 years previously observed during field operation could take place only when the worst conditions responsible for crack initiation and growth have been realized concurrently at the site of rupture. This also explains the reason that over 95 pct of NNpH cracks remain harmless, while about 1 pct of them become a threat to the integrity of pipeline steels.  相似文献   

3.
This investigation was initiated to provide governing equations for crack initiation, crack growth, and service life prediction of pipeline steels in near-neutral pH (NNpH) environments. This investigation develops a predictive model considering loading interactions occurring during oil and gas pipeline operation with underload-type variable pressure fluctuations. This method has predicted lifetimes comparable to the actual service lives found in the field. This is in sharp contrast with the predictions made by existing methods that are either conservative or inconsistent with the field observations. It has been demonstrated that large slash loads (R-ratio is 0.05), often seen during gas pipeline operation, are a major life-limiting factor and should be avoided where possible. Oil pipelines have shorter lifetime because of their more frequent pressure fluctuations and larger amplitude load cycles. The accuracy of prediction can be improved if pressure data with appropriate sampling intervals are used. The sampling interval error is much larger in the prediction of oil pipelines than gas pipelines because of their different compressibility but is minimized if the pressure sampling rate for the data is at or less than one minute.  相似文献   

4.
5.
The application of strain-based design for pipelines requires comprehensive understanding of the postyield mechanical behavior of materials. In this article, the impact of plastic prestrain on near-neutral pH stress corrosion cracking (SCC) susceptibility of welded X70 steel was investigated with a slow strain rate tensile (SSRT) test. Generally, plastic prestrain reduces the SCC resistance in various welded zones. The SCC susceptibility of the test materials can be put in the following order: heat-affected zone (HAZ) > weld metal (WM) > base metal (BM). Fractographic analysis indicates that there are two cracking modes, mode I and mode II, during SSRT tests. Mode I cracks propagate along the direction perpendicular to the maximum tensile stress, and mode II cracks lie in planes roughly parallel to the plane where the maximum shear exists. The SCC of the BM is governed by mode I cracking and fracture of the HAZ, and the WM is dominated by mode II cracking. Damage analysis shows that the detrimental impact of plastic prestrain on the residual SCC resistance cannot be evaluated with the linear superposition model. A plastic prestrain sensitivity, a material constant independent of plastic prestrain, is proposed to characterize the susceptibility of SCC resistance to plastic prestrain, and it increases with the SCC susceptibility of the steels. The enhanced SCC susceptibility caused by plastic prestrain may be related to an increase in yield strength. The correlation of the ratio of the reduction in area in NS4 solution to that in air (RA SCC/RA air) with the yield strength is microstructure dependent.  相似文献   

6.
Wang  Dan  Xie  Fei  Wu  Ming  Liu  Guangxin  Zong  Yue  Li  Xue 《Metallurgical and Materials Transactions A》2017,48(6):2999-3007
Metallurgical and Materials Transactions A - Self-designed experimental device was adopted to ensure the normal growth of sulphate-reducing bacteria (SRB) in sterile simulated Yingtan soil...  相似文献   

7.
Potentiodynamic polarization measurement was used to investigate the effects of temperature, dissolved ox-ygen concentration and pH on the electrochemical behavior of X70 pipeline steel in simulated solution according to the orthogonal testing method. The results showed that temperature, dissolved oxygen concentration and pH had great influence on corrosion current density (icorr)of X70 steel. Corrosion current density of X70 steel was most influenced by dissolved oxygen concentration in simulated solution. The corrosion degree of X70 steel was the least under the environment of low temperature, deficient oxygen and weak acid.  相似文献   

8.
The pitting corrosion behavior of stainless steel (SS) 304 in aqueous CO2-H2S-CI-environment was investigated by potentiodynamic cyclic anodic polarization and electron probemicroanalysis (EPMA). The experimental results show that the pitting corrosion susceptivityof SS 304 increases with the increase of temperature. Chlorine ion is the prerequisite for pittingcorrosion of SS 304 in H2S-CO2 environments. There is a linear relatiotxship between the pittingcorrosion potential (Eb-100) and chlorine ion concentration, and Eb-00 becomes noble with in-creasing pH value of the solution with or without H2S. pH value has little effect on the protec-tion potential with the presence of Hz S. H2S increases strongly the pitting corrosion susceptivi-ty and deteriorates the pitting corrosion resistance of SS 304 in CO2 environments. The obser-vations by EPMA show that SS 304 in CO2-saturated NaCI solution (3%) with H2S sufferspitting corrosion accompanied with intergranular corrosion.  相似文献   

9.
10.
包钢生产的X70管线钢在露天环境中暴露放置3年后,钢管表面腐蚀并不严重,具有类似耐候钢的腐蚀形貌特征,而国内某钢厂生产的X70管线钢在相同环境下放置相同时间后,表面腐蚀较为严重,文章通过采用周期腐蚀试验对包钢生产的X70管线钢与国内某钢厂生产的X70管线钢进行对比分析,研究包钢X70管线钢耐大气腐蚀行为规律。  相似文献   

11.
Xie  Fei  Wang  Dan  Wu  Ming  Yu  Chengxiang  Sun  Dongxu  Yang  Xu  Xu  Changhao 《Metallurgical and Materials Transactions A》2018,49(4):1372-1382
Metallurgical and Materials Transactions A - The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by...  相似文献   

12.
高建忠  郭斌  徐进桥  郭爱民  王青峰 《钢铁》2012,47(8):62-64,73
通过在Gleeble-3500热模拟试验机上进行的两道次热压缩变形试验,对含铌微合金管线钢的静态软化行为进行了研究。采用应力补偿法计算了不同变形温度下的静态再结晶百分数。变形温度和弛豫时间对X120钢的静态再结晶影响很大。根据试验数据和静态再结晶动力学方程,计算出X120管线钢静态再结晶激活能为401.56kJ.mol-1。绘制了试验钢的析出动力学(PTT)曲线。  相似文献   

13.
Using methods of single-hit hot compression and stress relaxation after deformation on a Gleeble 1500D thermomechanical simulator, the curves of flow stress and stress relaxation, the microstructure and the recrystallization behavior of Nb-V-Ti high strength microalloyed low carbon pipeline steel were studied, and the influence of the thermomechanical treatment parameters on dynamic and static recrystallization of the steel was investigated. It was found that microalloying elements improved the deformation activation energy and produced a retardation of the recrystallization due to the solid solution and precipitation pinning. The deformation conditions such as deformation temperature, strain, and strain rate influenced the recrystallization kinetics and the microstructure respectively. Equations obtained can be used to valuate and predict the dynamic and static recrystallizations.  相似文献   

14.
The concept of oxide-induced crack closure is utilized to explain the role of gaseous and aqueous environments on corrosion fatigue crack propagationat ultralow, near-threshold growth rates in bainitic and martensitic 2 1/4 Cr-1 Mo pressure vessel steels. It is shown that at low load ratios, near-threshold growth rates are significantly reduced in moist environments (such as air or water), compared to dry environments (such as hydrogen or helium gas), due to the formation of excess corrosion deposits on crack faces which enhances crack closure. Using Auger spectroscopy, it is found that at the threshold stress intensity, ΔKo, below which cracks appear dormant, the maximum thickness of excess oxide debris within the crack is comparable with the pulsating crack tip opening displacement. The implications of this model to near-threshold fatigue crack growth behavior, in terms of the role of load ratio, environment, and microstructure are discussed. formerly with M.I.T., is with McDonnell-Douglas Corporation, Redondo Beach, CA. formerly with M.I.T., is Associate Professor, Department of Materials Science and Mineral Engineering, and Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.  相似文献   

15.
Nb、Ti是管线钢中常用的合金元素。主要通过热处理和喷碳处理等手段研究了合金元素Nb、Ti的含量及加热制度对再加热奥氏体晶粒长大的影响。试验结果表明:试验钢在再加热过程中,奥氏体晶粒尺寸随加热温度升高而增大;在常规含铌钢中,为获得较小的加热态奥氏体晶粒,钛的质量分数应控制在一定范围内(0.010%~0.015%),钛含量过高或过低都对晶粒细化有不利影响。此外,在钛含量相同的情况下,高铌钢奥氏体晶粒长大明显,高铌钢的最佳钛含量范围也与常规含铌钢的最佳钛含量不同。  相似文献   

16.
Weathering steel is widely used in various fields due to its excellent mechanical properties and high corrosion resistance. The effect of chromium content on the S450 EW weathering steel in cyclic immersion test was studied. The results indicated that the corrosion resistance of S450 EW weathering steel is closely related to chromium content. The addition of chromium significantly inhibited the weathering steel corrosion. The corrosion rate of experimental steel after 96 h immersion was 1.101 g·m-2·h-1. The rust of S450 EW weathering steel was mainly constituted of Fe OOH and Fe3O4 phase, and the elevation of chromium content promoted the formation of α-Fe OOH. The fine precipitates of the two phases contributed to the formation of dense dust layer of test steel. Furthermore, the increase of chromium is beneficial for the cure of original defects and cracks of the rust layer via the enrichment of chromium. The corrosion potential and the resistance of corrosion process were thus increased, protecting the experimental steel from further corrosion. A S450 EW steel with corrosion resistance more than 1.5 times of Q450NQR1 steel was prepared.  相似文献   

17.
This article gives a short review on the effects of thickness/constraint and environment on crack growth behavior under cyclic and static loadings. Fatigue crack growth data taken from the literature, corresponding to different environments, ranging from vacuum to air and NaCl solution for a number of alloys and different specimens geometries are presented and analyzed. Reported results indicate that for relatively inert material/environment systems, there is a weak thickness/constraint effect on fatigue crack growth behavior. On the other hand, for corrosive material/environment systems, there is a significant thickness/constraint effect on crack growth rate behavior under both cyclic and static loadings. Some implications related to crack growth modeling are suggested.  相似文献   

18.
研究了X60管线钢的显微组织对其拉伸过程中屈服行为的影响.铁素体 珠光体组织和非多变形铁素体组织分别会产生屈服现象和无屈服现象,这与其晶粒尺寸的大小和晶粒内位错密度的高低有关.  相似文献   

19.
The effects of thermomechanical processing and subsequent heat treatment on the small fatigue crack growth (FCG) behavior of an AM60 (Mg-6.29Al-0.28Mn wt pct) alloy were evaluated. The effects of mechanical loading parameters, such as maximum stress and load-ratio, on the small FCG behavior were also determined. Maximum stress did not appear to affect the crack propagation rate of small cracks in the stress and crack size ranges considered. Materials with different microstructures and yield stresses, introduced by different processing conditions, showed similar crack growth rates at equivalent stress intensity factor ranges. The effect of load ratio on small crack growth rates was recorded. Fracture surface characterization suggested that the fatigue crack propagation mechanism was a mixture of transgranular and intergranular cracking. Porosity and other material defects played respective important roles in determining the fatigue crack initiation and propagation behavior.  相似文献   

20.
To study the influence of hydrogen on the fatigue strength of AISI type 304 metastable austenitic stainless steel, specimens were cathodically charged with hydrogen. Using tension-compression fatigue tests, the behavior of fatigue crack growth from a small drill hole in the hydrogen-charged specimen was compared with that of noncharged specimen. Hydrogen charging led to a marked increase in the crack growth rate. Typical characteristics of hydrogen effect were observed in the slip band morphology and fatigue striation. To elucidate the behavior of hydrogen diffusion microscopically in the fatigue process, the hydrogen emission from the specimens was visualized using the hydrogen microprint technique (HMT). In the hydrogen-charged specimen, hydrogen emissions were mainly observed in the vicinity of the fatigue crack. Comparison between the HMT image and the etched microstructure image revealed that the slip bands worked as a pathway for hydrogen to move preferentially. Hydrogen-charging resulted in a significant change in the phase transformation behavior in the fatigue process. In the noncharged specimen, a massive type α′ martensite was observed in the vicinity of the fatigue crack. On the other hand, in the hydrogen-charged specimen, large amounts of ε martensite and a smaller amount of α′ martensite were observed along the slip bands. The results indicated that solute hydrogen facilitated the ε martensitic transformation in the fatigue process. Comparison between the results of HMT and EBSD inferred that martensitic transformations as well as plastic deformation itself can enhance the mobility of hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号