首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
为深入了解碳化硅陶瓷的光学表面加工性能,采用常压固相烧结法制备了碳化硅陶瓷,在保证致密度的前提下,通过改变碳的含量,研究了残余碳对SiC陶瓷抛光面的表面质量和光学性能的影响。研究发现,C的质量含量为3%~7%时,SiC陶瓷抛光表面的RMS(root mean square)粗糙度均约为2nm。当C含量为3%~6%时,SiC陶瓷抛光表面在400~750nm波段的全反射率、漫反射率和镜面反射率无明显变化;当C含量升至7%时,全反射率稍有降低,漫反射率稍有上升,镜面反射率稍有降低。其原因可能是过多的残余碳引起SiC陶瓷的折射率下降和产生光学散射,最终造成镜面反射率降低。  相似文献   

2.
《超硬材料工程》2010,(2):61-61
微型高精密镜面模具对加工后的形状精度和表面粗糙度要求非常高,原有的“粗切削+精磨+研磨”的加工方法不仅要花费很长时间,而且微细形状不适合采用磨削加工,此外,研磨会使微细形状产生塌边等缺陷,使形状精度达不到要求。  相似文献   

3.
《塑胶工业》2002,(6):64-66
有分析指出,全球光学和光电产品市场总值,将于未来五年以平均每年40%的速度增长,并于二零零五年前上升至150亿美元(约1170亿港元),让纳米级精度的光学镜面加工,成为研究开发的热点,因诸如医疗和电讯器材的新兴市场,光学镜面形状精度均在1/4到1/20波长之间。  相似文献   

4.
从线切割的加工精度、粗糙度和残余变形三方面详细阐述了影响线切割加工质量的原因。并给出了相应的解决办法。对提高电火花线切割的加工质量有指导意义。  相似文献   

5.
简单介绍几种常见镜面革如普通镜面革,水晶革,丽晶革,变色革的生产方法,并对生产中影响革质量的因素给出解决方法。  相似文献   

6.
采用化学偶联法,通过调整腐蚀剂组分及其相对含量,一步法实现了碳化硅量子点(SiC-QDs)表面物化特性的有效调控。研究表明:经硝酸(HNO_3)和氢氟酸(HF)混合腐蚀剂腐蚀纳米β-SiC粉末,通过超声空化破碎分散及高速离心处理,可获得SiC-QDs水相溶液,并一步法实现了表面修饰,在其表面形成了—COO、—OH等亲有机物功能基团。采用浓硫酸(H_2SO_4)为偶联剂,制备出表面具有巯基(—SH)的SiC-QDs水相溶液。腐蚀剂组分的相对含量对于SiC-QDs的光致发光强度与表面巯基的形成影响较大。在波长为340 nm的激发光激发下,SiC-QDs具有最大的发光强度,随着腐蚀剂中H_2SO_4含量的增加,其光致发光强度呈现降低趋势。当腐蚀剂的体积比为V(HF):V(HNO_3):V(H_2SO_4)=6:1:1时,制备的水相SiC-QDs表面既能稳定耦合—SH,又可以获得较高的光致发光强度。另外,对表面物化特性调控及其形成机制进行了分析研究。  相似文献   

7.
亚微米碳化硅超细粉加工方法研究   总被引:1,自引:0,他引:1  
介绍了一种亚微米硅超细粉的加工方法,对磨机转速,磨介配比,分散剂,纯化处理以及粉体性能等进行了研究,用该工艺方法加工亚微米碳化硅粉体,不需再次分级,粉体分布窄,一致性好,性能达到国外同类产品水平。  相似文献   

8.
碳化硅纤维增强锂铝硅玻璃陶瓷界面粗糙度研究   总被引:2,自引:0,他引:2  
采用复合材料界面微脱粘仪,根据纤维回推技术对SiC纤维增强锂铝硅(LAS)玻璃陶瓷基复合材料的纤维/基体界面粗糙度进行测试。结果表明该复合材料的界面粗糙度约8~15nm。用TEM,EELS等手段,对界面的组成的形貌进行观察。分析和讨论了基体成分以及复合材料的热暴露对界面粗糙度的影响。发现Nb2O5在基体中的加入有助于减小界面粗糙度,而B2O3则使界面粗糙度上升。空气中热暴露使界面粗糙度急剧上升。  相似文献   

9.
10.
根据有关辊轴类零件光饰新技术的发展,借鉴有关光饰前沿技术的应用及样品的直观效果,通过不断的研究和技术攻关,先后进行了抛光车床设备改造、抛光磨轮的选取、工装夹具的设计制造、抛光工艺过程及电沉积工艺过程的优化等,经过工艺试验、项目定型及批量性投产,各项技术指标达到了预期目标。  相似文献   

11.
2.5维碳化硅纤维增强碳化硅复合材料的力学性能   总被引:1,自引:0,他引:1  
采用低压化学气相渗透法制备了具有热解碳界面层的2.5维SiCf/SiC复合材料.研究了界面层厚度和基体制备工艺对材料力学性能的影响.结果表明:0.1μm厚的界面层使材料的弯曲强度提高了104.2%从144增加到294MPa),材料表现为非灾难性断裂;界面层厚度进一步增加(到0.161μm),纤维的增强效果减弱,材料的断裂行为变差.基体制备温度由1050℃降到950℃时,材料强度增加了≈45%(从188增加到274MPa):制备压力由8kPa增加到16kPa时,气孔率升高,SiC基体晶粒形状由菱形变为球形.基体的球形晶粒有利于提高材料的承载能力,虽然复合材料的气孔率较高,但其弯曲强度却稍有增加.  相似文献   

12.
多孔碳化硅陶瓷的原位氧化反应制备及其性能   总被引:1,自引:0,他引:1  
以SiC为陶瓷骨料,Al2O3作为添加剂,通过原位氧化反应制备了Sic多孔陶瓷,并对其氧化反应特性及性能进行了研究.结果表明:在1 300~1 500℃,随烧结温度的升高,SiC的氧化程度增加,SiC多孔陶瓷的强度逐渐增加,但开口孔隙率有所降低.莫来石相在1 500℃开始生成·当烧结温度升高到1 550℃时,莫来石大量生成,得到了孔结构相互贯通且颈部发育良好的莫来石结合SiC多孔陶瓷;由于在SiC颗粒表面上覆盖了致密的莫来石层,SiC的氧化受到抑制,开口孔隙率因而升高,SiC多孔陶瓷的强度因莫来石的大量生成而增加.由平均粒径为5.0um的SiC,并添加20%(质量分数)Al2O3,经1 550℃烧结2h制备的SiC多孔陶瓷具有良好的性能,其抗弯强度为158.7MPa、开口孔隙率为27.7%.  相似文献   

13.
超细碳化硅(SiC)颗粒优异的物理化学性能和广泛的应用领域成为陶瓷颗粒表面改性研究的一个热点。介绍了超细SiC颗粒改性的目的和机理,从物理改性、化学改性两个方面对改性方法及研究进展情况进行了总结,并在此基础上指出了超细SiC颗粒的表面改性面临的主要问题。  相似文献   

14.
碳化硅纳米晶须的制备   总被引:9,自引:2,他引:7  
戴长虹  水丽 《硅酸盐学报》2001,29(3):275-277
以SiO2纳米粉和自制的树脂热解碳作原料,用一种新的加热设备-双重加热炉合成了直径在5-30nm范围内,长径比在50-300之间的碳化硅纳米晶须。用化学分析方法,X射线衍射仪、透射电子显微镜等手段对碳化硅纳米晶须进行了表征。研究结果表明:用双重加热炉合成碳化硅纳米晶须的最佳湿度范围为1250-1300℃,恒温时间为60-75min,碳化硅纳米晶须的产率最高可达82%(质量分数)。  相似文献   

15.
用低纯碳化硅微粉烧结碳化硅陶瓷   总被引:9,自引:0,他引:9  
用工业尾料低纯W3.5 μm SiC微粉为原料,在N2保护下烧结碳化硅(SiC)陶瓷.研究了低纯SiC微粉中杂质对SiC陶瓷力学性能的影响,对比了微粉提纯后材料的性能与结构.通过扫描电镜、金相显微镜分析材料的显微结构.结果表明:微粉杂质中SiO2、金属氧化物在SiC烧结温度下的放气反应是影响陶瓷材料力学性能的主要因素.由低纯SiC粉制得的材料的烧结密度达到(3.15±0.01)g/cm3,抗折强度达到(441±10)MPa.  相似文献   

16.
碳化硅涂层的离子注入改性   总被引:2,自引:0,他引:2  
李舵  成来飞  吴守军  沈季雄 《硅酸盐学报》2005,33(10):1202-1207
在SiC涂层表面注入Al^3+,B^3+,St^4+,观察3种离子注入对涂层表面裂纹的封填情况,分析离子注入后涂层表面的相组成,考核离子注入对SiC-C/SiC材料抗氧化性能的影响。在1300℃模拟空气中氧化15h后,注入Al^3+的复合材料的氧化质量损失比未经涂层改性的降低了0.3%,形成的玻璃氧化层中气泡和孔洞少,对涂层裂纹的封填效果较好但覆盖不均匀。注入B^3+的复合材料的氧化质量损失比未经涂层改性的降低了0.1%,形成的玻璃氧化层的流动性好且覆盖均匀,但其表面多气泡和孔洞,破坏了玻璃氧化层对涂层裂纹的封填作用。注入Si^4+的复合材料的氧化质量损失同注入B^3+的试样基本相当,但是其氧化质量损失有增大趋势,表明Si^4+的注入对改善材料的抗氧化性能无积极作用。  相似文献   

17.
碳化硅陶瓷先驱体聚甲基硅烷的研究进展   总被引:1,自引:1,他引:0  
介绍了聚甲基硅烷的主要合成方法和性能,特别是其反应活性和高温热裂解性能.综述了聚甲基硅烷及其改性先驱体应用于制备碳化硅纤维、碳化硅基复合材料、多孔陶瓷材料等领域的研究进展.聚甲基硅烷作为碳化辞陶瓷先驱体,其制备简单、热解产物接近碳化硅的化学计量比,具有广阔的应用前景.未来该领域的研究重点是聚甲基硅烷的规模化合成,低成本改性聚甲基硅烷先驱体研究,聚甲基硅烷系列复合先驱体的制备等.  相似文献   

18.
采用包混工艺将酚醛树脂和硅粉制备成粉体先驱体,然后经碳化和煅烧,制备出球形度好、粒径分布窄且均匀的亚微米碳化硅粉体,其平均粒径约为0.1μm.亚微米碳化硅粉体的生成过程为:硅-酚醛树脂核壳粉体先驱体经过800℃碳化处理生成硅-碳核壳粉料;在1 500℃烧结,液态硅与碳壳内层反应生成碳化硅层;在热应力和液态硅的冲击下碳化硅壳破碎,形成的亚微米碳化硅颗粒进入液态硅中,通过碳化硅生成、破碎的不断循环,新的碳化硅层不断向碳层推进直至完全生成亚微米碳化硅球形粉体.  相似文献   

19.
碳化硅材料以其优异的性能得到了越来越广泛的应用,通过简要介绍碳化硅致密陶瓷的制备方法及其性能和总结近年来国内外的研究进展,来展望碳化硅致密陶瓷材料的研究发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号