首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive a method for using distributed resonators in /spl Delta//spl Sigma/ modulators and demonstrate these /spl Delta//spl Sigma/ modulators have several advantages over existing /spl Delta//spl Sigma/ modulator architectures. Like continuous-time (CT) /spl Delta//spl Sigma/ modulators, the proposed /spl Delta//spl Sigma/ modulators do not require a high-precision track-and-hold, and additionally can take advantage of the high-Q of distributed resonators. Like discrete-time /spl Delta//spl Sigma/ modulators, the proposed /spl Delta//spl Sigma/ modulators are relatively insensitive to feedback loop delays and can subsample. We present simulations of several types of these /spl Delta//spl Sigma/ modulators and examine the challenges in their design.  相似文献   

2.
Time jitter in continuous-time /spl Sigma//spl Delta/ modulators is a known limitation on the maximum achievable signal-to-noise-ratio (SNR). Analysis of time jitter in this type of converter shows that a switched-capacitor (SC) feedback digital-to-analog converter (DAC) reduces the sensitivity to time jitter significantly. In this paper, an I and Q continuous-time fifth-order /spl Sigma//spl Delta/ modulator with 1-bit quantizer and SC feedback DAC is presented, which demonstrates the improvement in maximum achievable SNR when using an SC instead of a switched-current (SI) feedback circuit. The modulator is designed for a GSM/CDMA2000/UMTS receiver and achieves a dynamic range of 92/83/72 dB in 200/1228/3840 kHz, respectively. The intermodulation distance IM2, 3 is better than 87 dB in all modes. Both the I and Q modulator consumes a power of 3.8/4.1/4.5 mW at 1.8 V. Processed in 0.18-/spl mu/m CMOS, the 0.55-mm/sup 2/ integrated circuit includes a phase-locked loop, two oscillators, and a bandgap.  相似文献   

3.
Chang  T.-H. Dung  L.-R. 《Electronics letters》2004,40(11):652-654
A new design methodology for wideband, multi-stage, multi-bit /spl Sigma//spl Delta/ modulators (/spl Sigma//spl Delta/Ms) with improved dynamic range, is presented. The key to improving dynamic range is to have the first stage oscillated, then the coarse quantisation noise vanishes and hence circuit non-linearities do not cause a leakage quantisation noise problem. Based on the proposed methodology, a fourth-order four-bit /spl Sigma//spl Delta/M can achieve the dynamic range of 80 dB at the OSR of 8 without using additional calibration techniques.  相似文献   

4.
In this paper, we present a new continuous-time bandpass delta-sigma (/spl Delta//spl Sigma/) modulator architecture with mixer inside the feedback loop. The proposed bandpass /spl Delta//spl Sigma/ modulator is insensitive to time-delay jitter in the digital-to-analog conversion feedback pulse, unlike conventional continuous-time bandpass /spl Delta//spl Sigma/ modulators. The sampling frequency of the proposed /spl Delta//spl Sigma/ modulator can be less than the center frequency of the input narrow-band signal.  相似文献   

5.
Direct digital synthesis of signals in the hundreds of megahertz can lead to simpler, smaller transceivers, free of images and LO feedthrough that plague systems requiring analog upconversion. We present a 3-bit, 2 GS/s, /spl Delta//spl Sigma/-modulated DAC in InP HBT technology. The DAC is linearized using bandpass mismatch shaping. The mismatch shaper uses seven tunable 1.5-bit discrete-time bandpass /spl Delta//spl Sigma/ modulators to dynamically route the digital signals to the DACs. These /spl Delta//spl Sigma/ modulators operate in the analog domain to decrease system complexity and power consumption. The mismatch-shaped DAC can generate narrowband signals between 250-750 MHz with >68 dB SNR in a 1-MHz bw, >74-dB SFDR, and <-80-dBc intermodulation distortion with an 8.1-W power consumption.  相似文献   

6.
A scheme for achieving adaptive reduction in the order of the loop filter of usual high-order, single-stage, single-bit Delta-Sigma (/spl Delta//spl Sigma/) modulators is proposed in order to improve their performance. The resulting /spl Delta//spl Sigma/ modulators can recover from instability effectively, having also an extended input signal range in comparison to that of the corresponding conventional /spl Delta//spl Sigma/ modulators.  相似文献   

7.
A design strategy of low-voltage high-linearity MOSFET-only /spl Sigma//spl Delta/ modulators in standard digital CMOS technology is presented. The modulators use substrate-biased MOSFETs in the depletion region as capacitors, linearized by different compensation techniques. This work shows the design, simulation and measured results of a number of MOSFET-only /spl Sigma//spl Delta/ modulators using different implementations of so called compensated depletion-mode MOS capacitors. The modulators are designed for the demands of speech band applications. The performance of the modulators proves the capability of compensated depletion-mode MOS capacitors to fulfill analog circuit requirements at low supply voltages with reduced processing efforts.  相似文献   

8.
Experimental verification is given for the use of /spl Sigma//spl Delta/ modulation for high-temperature applications (/spl ges/approximately 150/spl deg/C) in a standard CMOS process. Switched-capacitor circuits are used to implement a second-order single-stage and a third-order 2-1 MASH /spl Sigma//spl Delta/ modulator with single-bit quantization. The two modulators have an oversampling ratio of 256 with an input signal bandwidth of 500 Hz. The modulators were fabricated in a 1.5-/spl mu/m standard CMOS technology. A fully differential signal path and near minimum sized switches are used to mitigate the effect of large junction-to-substrate leakage current present at high temperatures. Experimental results show both modulators are capable of over 14 bits of resolution at 225/spl deg/C and over 13 bits of resolution at 255/spl deg/C. Results show that the single-stage modulator is more resistant to high-temperature circuit impairment than is the MASH cascaded structure.  相似文献   

9.
This paper describes a new noise-shaping technique for reducing the noise of the internal digital-analog conversion (DAC) in multi-bit low-pass sigma-delta modulators. The proposed technique works with most existing dynamic element matching (DEM) algorithms to provide noise shaping to the DAC noise. The simulation shows that a 10-dB improvement in the signal-to-noise conversion ratio can be obtained with the proposed noise-shaping with DEM (NSDEM) technique. A dithered DAC employing NSDEM is realized in a 0.35-/spl mu/m CMOS process and the test result shows the first-order high-pass noise shaping to the DAC noise, and validates the proposed concept.  相似文献   

10.
This paper presents a means to overcome the high sensitivity of continuous-time sigma-delta (/spl Sigma//spl Delta/) modulators to clock jitter by using a modified switched-capacitor structure with resistive element in the continuous-time feedback digital-analog converter (DAC). The reduced sensitivity to jitter is both simulated and proven by measured results from two implemented third-order modulators. Additionally, the nonideal behavior is analyzed analytically and by simulations.  相似文献   

11.
A quadrature fourth-order, continuous-time, /spl Sigma//spl Delta/ modulator with 1.5-b quantizer and feedback digital-to-analog converter (DAC) for a universal mobile telecommunication system (UMTS) receiver chain is presented. It achieves a dynamic range of 70 dB in a 2-MHz bandwidth and the total harmonic distortion is -74 dB at full-scale input. When used in an integrated receiver for UMTS, the dynamic range of the modulator substantially reduces the need for analog automatic gain control and its tolerance of large out-of-band interference also permits the use of only first-order prefiltering. An IC including an I and Q /spl Sigma//spl Delta/ modulator, phase-locked loop, oscillator, and bandgap dissipates 11.5 mW at 1.8 V. The active area is 0.41 mm/sup 2/ in a 0.18-/spl mu/m 1-poly 5-metal CMOS technology.  相似文献   

12.
Multi-bit Sigma Delta modulators suffer from the DAC non-linearity problem and often need complicated Dynamic Element Matching (DEM) circuits. Combining a multi-bit quantizer and a single-bit DAC eliminates the need of DEM circuits, simplifies the design, and reduces the power consumption. Using a digital circuit to compensate the truncation error caused by cutting the multi-bit feedback to single-bit, the structure can achieve the same noise transfer function as a conventional multi-bit modulator. One drawback is that the signal scaling in such a structure lowers the overall resolution. In this paper the influence of signal scaling is analyzed and a design example given. A second order 3-bit modulator is fabricated in 0.35 m CMOS process, achieving 82 dB dynamic range at OSR = 128 and a peak SNDR of 73.1 dB.  相似文献   

13.
We present a tool that starting from high-level specifications of switched-capacitor (SC) /spl Sigma//spl Delta/ modulators calculates optimum specifications for their building blocks and then optimum sizes for the block schematics. At both design levels, optimization is performed using statistical techniques to enable global design and innovative heuristics for increased computer efficiency as compared with conventional statistical optimization. The tool uses an equation-based approach at the modulator level, a simulation-based approach at the cell level, and incorporates an advanced /spl Sigma//spl Delta/ behavioral simulator for monitoring and design space exploration. We include measurements taken from two silicon prototypes: (1) a 16 b @ 16 kHz output rate second-order /spl Sigma//spl Delta/ modulator; and (2) a 17 b @ 40 kHz output rate fourth-order /spl Sigma//spl Delta/ modulator. Both use SC fully differential circuits and were designed using the proposed tool and manufactured in a 1.2 /spl mu/m CMOS double-metal double-poly technology.<>  相似文献   

14.
A new, fully differential comparator with rail to rail input range is presented. This comparator can be used as a 1-bit quantiser in sub-1 V /spl Delta//spl Sigma/ modulators. The quantiser is laid out in 0.18 /spl mu/m CMOS technology. The post-layout simulation results show that the quantiser is capable of working at 10 MHz with 10 /spl mu/V resolution. This quantiser is successfully used in 0.8 V first-order and second-order fully differential /spl Delta//spl Sigma/ modulators.  相似文献   

15.
Design techniques for /spl Sigma//spl Delta/ modulators from communications are applied and adapted to improve the spectral characteristics of high frequency power electronic applications. A high frequency power electronic circuit can be regarded as a quantizer in an interpolative /spl Sigma//spl Delta/ modulator. We review one dimensional /spl Sigma//spl Delta/ modulators and then generalize to the hexagonal sigma-delta modulators that are appropriate to three-phase converters. A range of interpolative modulator designs from communications can then be generalized and applied to power electronic circuits. White noise spectral analysis of sigma-delta modulators is generalized and applied to analyze the designs so that the noise can be shaped to design requirements. Simulation results for an inverter show significant improvements in spectral performance.  相似文献   

16.
Quadrature sampling of intermediate frequency (IF) signals is subject to the well-known problem of gain and phase mismatches between the in-phase (I) and quadrature (Q) channels. This paper presents an IF-input quadrature-sampling switched-capacitor (SC) /spl Sigma//spl Delta/ modulator that circumvents the I/Q mismatch problem by time-sharing between the I and Q channels the critical circuit components, namely, the sampling capacitor and the capacitor of the first-stage feedback digital-to-analog converter (DAC). In addition, a clocking scheme that is insensitive to I/Q phase imbalance is used. A third-order single-loop 1-bit low-pass modulator has been designed and fabricated in a 0.35-/spl mu/m CMOS process with an active area of 0.57mm/sup 2/. The experimental results show that the modulator achieves an image-rejection ratio (IRR) of greater than 75dB throughout a 200-kHz signal bandwidth.  相似文献   

17.
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage /spl Delta//spl Sigma/ interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q/sup 2/ Random Walk switching scheme. The /spl Delta//spl Sigma/ interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage /spl Delta//spl Sigma/ noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-/spl mu/m CMOS technology with active area of 1.11mm/sup 2/ including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm/sup 2/. The total power consumption of the DDFS is 200mW with a 3.3-V power supply.  相似文献   

18.
It was previously shown that sigma-delta (/spl Sigma//spl Delta/) modulators of "asymptotic" type theoretically yield an equivalent feedforward system where the recursive nonlinear mechanisms are extracted from the feedback loop and reduced to a memoryless function. With time-varying inputs, we show in this paper, partially by mathematical derivations and partially by experiment, that this system is quasi-equivalent to the original modulator in a sense that we explain. This reduction of the nonlinear mechanisms should permit more refined modeling of the /spl Sigma//spl Delta/ errors in future research, with a better account of the original nonlinearities of asymptotic /spl Sigma//spl Delta/ modulation.  相似文献   

19.
This paper describes an architecture for stable high-order /spl Sigma//spl Delta/ modulation. The architecture is based on a hybrid /spl Sigma//spl Delta/ modulator, wherein hybrid integrators replace conventional analog integrators. The hybrid integrator, which is a combination of an analog integrator and a digital integrator, offers an increased dynamic range and helps make the resulting high-order /spl Sigma//spl Delta/ modulator stable. However, the hybrid /spl Sigma//spl Delta/ modulator relies on precise matching of analog and digital paths. In this paper, a calibration technique to alleviate possible mismatch between analog and digital paths is proposed. The calibration adaptively adjusts the digital integrators so that their transfer functions match the transfer functions of corresponding analog integrators. Through behavioral-level simulations of fourth-order /spl Sigma//spl Delta/ modulators, the calibration technique is verified.  相似文献   

20.
Three fully differential bandpass (BP) /spl Delta//spl Sigma/ modulators are presented. Two double-delay resonators are implemented using only one operational amplifier. The prototype circuits operate at a sampling frequency of 80 MHz. The BP /spl Delta//spl Sigma/ modulators can be used in an intermediate-frequency (IF) receiver to combine frequency downconversion with analog-to-digital conversion by directly sampling an input signal from an IF of 60 MHz to a digital IF of 20 MHz. The measured peak signal-to-noise-plus-distortion ratios are 78 dB for 270 kHz (GSM), 75 dB for 1.25 MHz (IS-95), 69 dB for 1.762 MHz (DECT), and 48 dB for 3.84 MHz (WCDMA/CDMA2000) bandwidths. The circuits are implemented with a 0.35-/spl mu/m CMOS technology and consume 24-38 mW from a 3.0-V supply, depending on the architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号