首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
Q460高强钢焊接箱形截面残余应力研究   总被引:1,自引:0,他引:1  
为研究国产Q460高强钢焊接箱形截面的残余应力分布规律,采用分割法对6个不同截面尺寸的试件进行了试验研究。基于测量数据,得到了不同试件全截面残余应力分布,研究了板件宽厚比、板件厚度等几何尺寸对残余应力的影响以及测量过程中人为产生的误差、截面板件间残余应力的相互影响及自平衡性等。试验结果表明:残余压应力与截面尺寸直接相关,残余拉应力与截面尺寸关系不大;采用分割法测量时人为操作产生的误差很小;截面4块板件的残余应力能够分别满足自平衡条件。提出了适用于Q460高强钢焊接箱形截面的残余应力分布模型和计算式,该模型能够准确反映截面尺寸的影响,且与试验结果吻合良好。  相似文献   

2.
为了研究国产Q550GJ高强钢焊接箱形截面构件的残余应力分布情况,根据其力学性能,设计和加工了6个Q550GJ高强结构钢焊接箱形截面构件,采用分割法对其进行残余应力试验。基于试验测量数据,得到不同试件的残余应力分布,研究板件宽厚比、板件厚度等几何尺寸对残余应力的影响。研究结果表明:高强钢Q550GJ焊接箱形截面构件的翼缘和腹板两端近焊缝区域出现较大的残余拉应力,翼缘和腹板中部呈现大小基本不变的残余压应力区,其余部位为由残余拉应力到残余压应力转变的过渡区域。随着宽厚比的提高,翼缘和腹板残余压应力值相应减小,残余拉应力值的变化规律不明显,有增大的趋势,且残余拉应力值均小于高强钢Q550GJ的屈服强度。在相同宽厚比情况下,焊接箱形截面构件厚度增加后,翼缘和腹板的残余压应力和残余拉应力相应减小。  相似文献   

3.
残余应力是影响钢压杆整体稳定承载力的重要缺陷因素之一.为获得合理的国产Q460高强钢焊接T形截面残余应力分布模型,采用锯割法对不同截面尺寸的8个试件进行残余应力试验研究.根据实测数据,绘制各截面的残余应力分布图,研究板件宽厚比、板件厚度对残余应力大小及分布宽度的影响,组成截面各板件间的相关性及残余应力的自平衡性.分析结果表明:焊缝处残余拉应力大小与板件厚度及板件宽厚比无关,相应的分布宽度与板件厚度及板件宽厚比成反比;板件外伸段中部的残余压应力大小与板件厚度和板件宽厚比成反比,相应的分布宽度与板件厚度和板件宽厚比无关;各板件内的残余应力能够分别满足自平衡条件,且全截面上的残余应力也能满足自平衡条件.基于上述分析结果,提出能够准确描述试验结果的国产Q460高强钢焊接T形截面残余应力分布模型,并进行有限元分析验证,为后续焊接T形截面钢压杆整体稳定承载力的研究提供重要参考.  相似文献   

4.
为研究焊接圆钢管的纵向残余应力分布规律,采用分割法对9个不同截面尺寸、不同钢材强度、不同加工工艺的试件进行了测量。基于测量数据,得到了不同尺寸试件的全截面残余应力分布和拉、压残余应力的大小,研究了圆钢管径厚比、钢材强度、热镀锌处理对残余应力的影响以及测量过程中人为误差对测量结果的影响。试验结果表明,高强度钢材焊接圆钢管的残余应力分布较均匀,热镀锌处理降低了圆钢管的最大残余拉应力;采用分割法测量时人为操作产生的误差很小。最后,提出了完整的适用于焊接圆钢管截面的残余应力分布模型,并进行有限元模拟,与试验结果吻合良好,为进一步对焊接圆钢管整体稳定进行有限元分析提供参考资料。  相似文献   

5.
现有高强钢焊接箱形截面残余应力分布模型仅适用于特定强度等级的高强钢,尚缺乏适用于不同强度等级高强钢的残余应力分布模型。为此,基于不同强度等级高强钢焊接箱形截面残余应力的已有试验,研究钢材的强度等级、板件厚度及宽厚比对残余应力分布和峰值的影响,提出不同强度等级高强钢焊接箱形截面的残余应力统一分布模型。该模型采用多重阶梯函数形状,适用于屈服强度460~960MPa的焊接箱形截面,且满足每个板件自平衡条件和对称性。将残余应力统一分布模型的形状、数值和已有试验结果进行对比,证明该模型的准确性。在基于纤维模型的极限承载力数值分析中,分别采用残余应力统一分布模型和已有分布模型计算高强钢焊接箱形柱的受压承载力,并将各自得到的极限承载力与已有试验结果进行对比。研究结果表明,采用残余应力统一分布模型后,不同等级高强钢焊接箱形柱的纤维模型计算能更准确地预测其极限承载力。残余应力统一分布模型可为不同等级高强钢焊接箱形柱的二阶非弹性分析提供参考。  相似文献   

6.
为研究小截面焊接工字钢残余应力分布规律,采用分割法,对某经振动台试验后的拉链柱式中心支撑钢框架结构中18个焊接工字形小截面试件的残余应力进行了测量。基于测量数据,得到了残余应力分布和拉、压残余应力的大小,研究了板件宽厚比对残余应力的影响。结果表明,较小截面试件的残余应力与翼缘、腹板宽厚比之间并无明显规律。建议翼缘端部和腹板的中部残余压应力值取0.5f_y(f_y为钢材屈服强度),翼缘中部和腹板端部残余拉应力值取0.8 f_y。基于此,提出了小截面焊接工字钢残余应力分布的简化计算模型,并将模型计算值与试验值进行了对比,绝大部分的实测残余应力值均在简化计算模型计算值的包络范围内。  相似文献   

7.
Q460高强钢焊接箱形截面轴压构件整体稳定性能研究   总被引:1,自引:0,他引:1  
为研究高强度钢材轴心受压钢柱的整体稳定性能,对5个国产Q460钢材焊接箱形截面柱进行了轴心受压试验研究。试验对试件的几何初弯曲、荷载初偏心以及截面的纵向残余应力分布均进行了测量。基于试验结果,分析了该类钢柱的失稳破坏形态和整体稳定承载力,建立了有限元分析模型并对试验结果进行模拟计算。研究结果表明:试件破坏模态均为整体弯曲失稳形态,大部分试件稳定承载力高于规范设计值;有限元分析模型能够准确地考虑几何初始缺陷和残余应力的影响,计算结果与试验结果吻合良好;通过与国内外钢结构设计规范的对比,提出了国产Q460高强钢焊接箱形截面轴压构件整体稳定设计的建议方法,即可以统一采用我国或欧洲规范的b类曲线进行设计,而不需要按板件宽厚比大小进行分类。  相似文献   

8.
《钢结构》2016,(2)
针对Q550高强钢焊接箱形截面构件的局部稳定和相关稳定性能,对12个局部稳定试件和10个相关稳定试件进行轴压试验,对试件的初始几何缺陷和焊接残余应力分布进行测量。结合已有研究成果,提出一种焊接箱形截面残余应力分布模型,试验结果初步揭示了Q550高强钢焊接箱形截面轴压构件局部稳定和相关稳定的性能。  相似文献   

9.
Q460高强钢焊接箱形压弯构件极限承载力试验研究   总被引:6,自引:0,他引:6  
为研究Q460高强钢中厚板焊接箱形压弯构件的整体失稳极限承载力,采用11mm厚国产Q460高强钢中厚板制作7个焊接箱形压弯试件,试件截面宽厚比分别为18、12、8,长细比分别为35、55、80。试验内容包括:Q460低合金高强钢的材性试验,三种焊接截面残余应力测试,各试件初始几何缺陷测量及极限承载力试验,从而进行了面内整体失稳压弯构件的极限承载力试验研究;并且把试验结果与我国现行钢结构设计规范计算值相比较。试验研究结果表明:Q460低合金高强钢材性具有高强度,塑性性能良好等特点;Q460高强钢焊接箱形截面残余应力分布形式与普通钢材箱形焊接截面分布基本相同,但是残余应力比降低;压弯构件极限承载力试验结果明显高于现行钢结构规范设计公式计算值,所以应对Q460高强钢焊接箱形压弯构件进行近一步参数分析研究,并得出其实用设计方法。  相似文献   

10.
采用有限元参数分析,比较了3种残余应力分布形式、6种箱形截面、6种钢材屈服强度(235~960 MPa)条件下残余应力对焊接箱形轴压柱整体稳定性能的影响。结果表明:残余应力分布形式对构件稳定性能影响较小。按矩形残余应力分布计算可知:当板厚不大于20 mm且宽厚比不大于20时,相同残余应力水平下,截面尺寸对构件稳定性能影响较小;不同屈服强度下残余应力对构件稳定性能有一定影响,且稳定性能随钢材强度增大而提高;截面中拉压残余应力水平对构件稳定性能有较大影响。  相似文献   

11.
A reliable estimation of residual stress within steel sections is important in steel structural design and construction, especially for high strength steel which has been increasingly used in recent years. An experimental investigation was conducted in this paper to quantify the residual stresses in 460 MPa steel welded I sections using sectioning method. The magnitude and distribution of both compressive and tensile residual stresses were obtained based on 1972 sets of original data measured from eight different sections. The effects of width-thickness ratios of the flange and web, steel plate thickness, weld type and interaction of the flange and web were investigated. It was found that the compressive residual stress magnitude was largely related to the sectional dimension, while no direct correlation was found with the weld type and size for tensile ones. No residual stress interaction between the flange and web was identified because of the stress equilibrium within each individual part. In addition, a distribution model was proposed in this paper and well described the experimental results, which can be used to investigate and design the buckling behavior of 460 MPa high strength steel members.  相似文献   

12.
Much work on the investigation of the magnitude and distribution of residual stresses in mild carbon steel sections have been made previously. However, limited efforts have been put on residual stress measurements of high strength steel sections. The differences of stress–strain curves and high-temperature material properties between the high strength steel and mild carbon steel demands a necessary study of the residual stresses in high strength steel welded sections. In the present study, three box columns fabricated from Q460 steel plates of 11 mm in thickness with different details were used for the examination. Both sectioning and hole-drilling methods are adopted for the measurement. The measured residual stress distributions of three different box sections are presented, and the corresponding simplified residual stress pattern is proposed. By comparing with the residual stress patterns for mild carbon steel, it is found that the box section fabricated from HSS plates has the lower compressive residual stress ratio. The differences in the measurement by using sectioning and hole-drilling methods are also compared.  相似文献   

13.
《钢结构》2012,(9):81
关于残余应力在低碳型钢中的大小和分布之前已经进行了很多研究,然而,对于高强度型钢中残余应力的测定研究甚少。高强钢和低碳钢在应力-应变曲线及高温材料特性上的差异是研究高强度焊接型钢残余应力的必要研究方面。在当前研究中,采用以厚11mm的Q460钢板焊接而成、不同的3个箱型柱做试验。切条法和钻孔法都可用于测量。最终将可看到测定的残余应力在3个箱型柱中的分布状况及其相应的简易残余应力分布图。与低碳钢的残余应力图相比较,可以发现,由高强度钢板焊接而成的箱型柱有较低的残余应力比。同时也对采用不同测定方法(切条法、钻孔法)所造成的差异进行了比较。  相似文献   

14.
Residual stress magnitudes and distributions in structural stainless steel built-up sections have been comprehensively investigated in this study. A total of 18 test specimens were fabricated from hot-rolled stainless steel plates by means of shielded metal arc welding (SMAW). Two grades of stainless steel were considered, namely the austenitic grade EN 1.4301 and the duplex grade EN 1.4462. Using the sectioning method, the test specimens were divided into strips. The residual stresses were then computed by multiplying the strains relieved during sectioning by the measured Young׳s moduli determined from tensile and compressive coupon tests. Residual stress distributions were obtained for 10 I-sections, four square hollow sections (SHS) and four rectangular hollow sections (RHS). Peak tensile residual stresses reached around 80% and 60% of the material 0.2% proof stress for grades EN 1.4301 and EN 1.4462, respectively. Based upon the test data, simplified predictive models for residual stress distributions in stainless steel built-up I-sections and box sections were developed. Following comparisons with other available residual stress test data, the applicability of the proposed models was also extended to other stainless steel alloys. The proposed residual stress patterns are suitable for inclusion in future analytical models and numerical simulations of stainless steel built-up sections.  相似文献   

15.
Residual stresses in cold-rolled stainless steel hollow sections   总被引:1,自引:0,他引:1  
Stainless steel exhibits a pronounced response to cold-work and heat input. As a result, the behaviour of structural stainless steel sections, as influenced by strength, ductility and residual stress presence, is sensitive to the precise means by which the sections are produced. This paper explores the presence and influence of residual stresses in cold-rolled stainless steel box sections using experimental and numerical techniques. In previous studies, residual stress magnitudes have been inferred from surface strain measurements and an assumed through-thickness stress distribution. In the present study, through-thickness residual stresses in cold-rolled stainless steel box sections have been measured directly by means of X-ray diffraction and their effect on structural behaviour has been carefully assessed through detailed non-linear numerical modelling. Geometric imperfections, flat and corner material properties and the average compressive response of stainless steel box sections were also examined experimentally and the results have been fully reported. From the X-ray diffraction measurements, it was concluded that the influence of through-thickness (bending) residual stresses in cold-rolled stainless steel box sections could be effectively represented by a rectangular stress block distribution. The developed ABAQUS numerical models included features such as non-linear material stress-strain characteristics, initial geometric imperfections, residual stresses (membrane and bending) and enhanced strength corner properties. The residual stresses, together with the corresponding plastic strains, were included in the FE models by means of the SIGINI and HARDINI Fortran subroutines. Of the two residual stress components, the bending residual stresses were found to be larger in magnitude and of greater (often positive) influence on the structural behaviour of thin-walled cold-formed stainless steel sections.  相似文献   

16.
Residual stress analysis of structural stainless steel sections   总被引:1,自引:0,他引:1  
The magnitude and distribution of residual stresses in structural carbon steel sections have been thoroughly investigated. However, few residual stress measurements have been made on structural stainless steel sections. Stainless steel has differing material stress-strain characteristics and thermal properties to carbon steel, both of which influence the formation of residual stresses. This suggests that established carbon steel residual stress models may not be appropriate for stainless steel. With increased use of stainless steel in load bearing applications, it is important to establish the residual stresses that exist within structural members. An experimental program to quantify the residual stresses in stainless steel sections from three different production routes has therefore been carried out. Comprehensive residual stress distributions have been obtained for three hot rolled angles, eight press braked angles and seven cold rolled box sections, with a total of over 800 readings taken. This paper presents the experimental techniques implemented and the residual stress distributions obtained as well as discussing the assumptions commonly made regarding through thickness residual stress variations. In the hot rolled and press braked sections, residual stresses were typically found to be below 20% of the material 0.2% proof stress, though for the cold rolled box sections, whilst membrane residual stresses were relatively low, bending residual stresses were found to be between 40% and 70% of the material 0.2% proof stress.  相似文献   

17.
为了研究单轴对称焊接工字形截面残余应力分布规律,采用盲孔法对15个单轴对称工字形截面试件进行了试验研究,得到了不同试件全截面纵向残余应力分布,研究了腹板高厚比、翼缘宽厚比、翼缘宽度、施焊顺序等对残余应力的影响。试验结果表明:残余压应力数值与截面尺寸直接相关,残余拉应力数值受截面尺寸影响较小;腹板中靠近宽翼缘一侧的残余压应力峰值大于靠近窄翼缘一侧的压应力峰值;翼缘宽度增大时,分布于所在翼缘和腹板的残余压应力减小;施焊顺序对翼缘上的残余应力及腹板上的残余拉应力峰值有一定影响,而腹板上的残余压应力没有明显变化。基于试验结果,提出了适用于单轴对称焊接工字形截面的残余应力分布模型,该模型能够较准确反映各种因素的影响。  相似文献   

18.
The stability of steel plates stiffened with tee-shape sections under uniaxial compression and combined uniaxial compression and bending was investigated using a finite element model. The emphasis of the work presented in this paper was to find the parameters that uniquely describe the strength and behaviour of stiffened steel plates. A finite element model, validated using the results of tests on full-size stiffened plate panels, was used to investigate the scale effect for five dimensionless parameters. The parameters investigated were: the transverse slenderness of the plate, the slenderness of the web and flange of the stiffener, the ratio of torsional slenderness of the stiffener to the transverse slenderness of the plate, and the stiffener-to-plate area ratio. Average magnitude residual stresses and initial imperfections were assumed for this study.A parametric study covering a wide range of dimensionless parameters indicated that stiffened steel plates do not fail by stiffener tripping unless a bending moment is applied to create flexural compressive stresses in the stiffener. Although plate buckling and overall buckling were found to lead to a very stable post-buckling behaviour, the interaction between these two buckling modes was found to give rise to a sudden loss of capacity following initial plate buckling. The plate transverse slenderness, the stiffener slenderness-to-plate slenderness ratio, and the stiffener-to-plate area ratio were found to have a significant effect on this behaviour.A comparison of the numerical analysis results with API and DnV design guidelines indicates that the guidelines predict stiffened steel plate capacity with various degrees of success, depending on the governing mode of failure. Neither guidelines address the potential interaction-buckling phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号