首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Cyclic deformation properties have been measured for high carbon steels that simulate the surface layers on carburized AISI 4027 steel. The influence of retained austenite is manifested in cyclic hardening and the development of mean compressive stresses.These responses, which are found to vary in direct proportion to the initial retained austenite content, are attributable to deformation-induced transformation. The importance of such cyclic changes is demonstrated by strain-life relations for carburized 4027; specimens with large amounts of retained austenite in the surface layers possess superior fatigue resistance to otherwise identical specimens that are more completely transformed. It is also shown that the benefits of retained austenite diminish as the intrinsic ductility of the fully transformed material increases.  相似文献   

2.
This research program was carried out to evaluate the effects of surface hardening on the fracture toughness of carburized steel. The materials AISI 8620 steel was machined into compact-tension (CT) specimens. The specimens were pack carburized at 930°C (1706°F) for different periods of time, cooled to ambient temperature and subsequently tempered at various temperatures for one hour. The fractured specimens were examined by hardness tests, metallography, X-ray diffraction analysis for retained austenite in the case, and scanning electron microscope fractographic analysis of the fracture surfaces. The experimental results revealed that theKIC values of the carburized, AISI 8620 steels were improved by the increase in case depth. Martensitic/tempered-martensitic structure in the case was the major constituent contributing to the improved toughness. The amount of retained austenite at the case increased as the thickness of the hardened layer increased. But retained austenite as well as large grain size were found to have adverse effects on fracture toughness of the carburized steel. The tempering temperature of 500°C (932°F) provided maximumKIC values. Higher tempering temperatures resulted in sharp decrease of fracture, toughness values. W{upeio}-Y{upoue} H{upo}, formerly a Graduate Student, in the Department of Materials Engineering Tatung Institute of Technology, is in compulsory 0 ROTC military service of Republic of China.  相似文献   

3.
The effect of different stress states on the stress-induced martensitic transformation of retained austenite was investigated in carburized 4320 steels with an initial retained austenite content of 15 pct. Experiments were conducted utilizing a specialized pressure rig and comparison between stress-strain behaviors of specimens with different austenitization and tempering histories was performed under these stress states. Experimental results indicated considerable asymmetry between tension and compression, with triaxial stress states resulting in the highest strength levels for the untempered material. Fine carbide precipitates due to low-temperature tempering increased the strength and ductility of the specimens and also changed the austenite-to-martensite transformation behavior. Numerical simulations of stress-strain behaviors under different stress states were obtained, with an existing micromechanical self-consistent framework utilizing the crystallographic theory of austenite/martensite transformation and the minimum complementary free-energy principle. The model was modified for carburized steels upon microstructural investigation and predicted the same trends in effective stress-effective strain behavior as observed experimentally.  相似文献   

4.
As bearing parts, 12 Cr2 Ni4 A is expected to have high hardness and excellent fatigue strength, so carburizing is employed to improve the inherit properties of 12 Cr2 Ni4 A. However, the traditional carburizing is limited by poor microstructure distribution and low rate of carburizing. The rare earth ion implantation is known to help improving the properties of tribology, corrosion resistance and oxidation resistance of metal. In this article, the RE implantation is employed to assist the carburizing. Lanthanum and cerium ion implantations are initially used to assist 12 Cr2 Ni4 A low pressure vacuum carburization.The microstructure, content of retained austenite, hardness, thickness of layer and carbon diffusion were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), X-ray diffraction(XRD) and Rockwell/Vickers hardness tester, respectively. It was shown that lanthanum and cerium implantations can improve structure of the vacuum carburizing layer, and enhance the uniformity of carbon element distribution on the carburized surface. Meanwhile the RE implantation plays a positive role in promoting the surface hardness and carburized rate. The lanthanum element has more significant effect on surface hardness and content of retained austenite than cerium element. The surface hardness of lanthanum element implanted layer was 62.9 HRC with 9.6% content of retained austenite, while the carburizing rate of cerium implanted layer increased by 12.4%.  相似文献   

5.
Stress-induced transformation of austenite to martensite was studied experimentally and numerically to gain an understanding of the increase in transformation strain with increasing tensile both and decreasing temperature. In addition, the anisotropy of the transformation strains was determined both experimentally and numerically. The material chosen for the study was a carburized 4320 steel with 35% retained austenite content. Monotonic and cyclic experiments were conducted in the range from -60 to 150°C. At 22°C, the volumetric transformation strain reached 0.006 at fracture in the uniaxial tensile test and 0.004 in the torsion test. Numerical calculations of the volumetric transformation strain and the anisotropy of the transformation strains were obtained with a modified Eshelby model where planes favorably oriented gradually transformed as stress was applied. The analysis predicted the experimentally observed transformation strains under both uniaxial and torsional loadings. The model also predicted the anisotropy of the transformation strains that was observed in experiments.  相似文献   

6.
TRIP sheet steels typically consist of ferrite, bainite, retained austenite, and martensite. The retained austenite is of particular importance because its deformation‐induced transformation to martensite contributes to excellent combinations of strength and ductility. While information is available regarding austenite response in uniaxial tension, less information is available for TRIP steels with respect to the forming response of retained austenite in complex strain states. Therefore, the purpose of this work was to study the austenite transformation behaviour in different strain paths by determining the amount of retained austenite before and after forming. Forming experiments were performed on a high strength 0.19C‐1.63Si‐1.59Mn TRIP sheet steel 1.2 mm in thickness in two different strain conditions, uniaxial tension (ε1 = ‐2ε2) and balanced biaxial stretching (ε1 = ε2). Specimens were formed to strains ranging from zero to approximately 0.2 effective (von Mises) strain. Specimens were tested both longitudinally and transverse to the rolling direction in uniaxial tension, and subtle mechanical property differences were found. The volume fraction of austenite, determined with X‐ray diffraction subsequent to forming, was found to decrease with increasing strain for both forming modes. Some modification in the crystallographic texture of the ferrite was observed with increasing strain, in specimens tested in the balanced biaxial stretch condition. This trend was not evident in the uniaxial tensile test results. Slight differences were found in the transformation behaviour of the austenite when formed in different strain conditions. More austenite transformed in specimens tested parallel to the rolling direction than transverse to the rolling direction in uniaxial tension. The amount of austenite transformed during biaxial stretching was determined to be greater than the amount transformed in uniaxial tension for specimens tested transverse to the rolling direction at an equivalent von Mises strain. The amount of austenite that transformed in biaxial tension, however, was comparable to the amount of austenite that transformed in specimens tested longitudinal to the rolling direction in uniaxial tension.  相似文献   

7.
The case microstructure and fracture of a coarse-grained 8620 steel carburized to 1 pet surface carbon are quite sensitive to austenitizing conditions. Reheating martensitic speci-mens below theA cm produces in the case a refined austenitic grain size, a very fine mar-tensite, spherical carbide particles and a minimum of retained austenite and microcrack-ing. Overload fracture through the latter microstructure is transgranular and scanning electron microscopy shows both microvoid coalescence around thecarbide particles and an apparent fine cleavage in other areas. As-carburized specimens and specimens re-austenitized above theA cm developed a case microstructure characterized by a coarse austenitic grain structure in which plate martensite with microcracks developed on cool-ing within a large amount of retained austenite. The overload fracture through this mi-crostructure followed a predominately intergranular path and effectively by-passed the retained austenite and microcracked martensite. Auger electron analysis showed that C and P were present on the intergranular fracture surfaces at concentrations above bulk, an observation consistent with literature reports of P segregation during austenitizing. This paper is based on a presentation made at a symposium on “Carburizing and Nitriding: Fundamentals, Processes and Properties” held at the Cincinnati Meeting of The Metallurgical Society of AIME, November 11 and 12, 1975 under the sponsorship of the Heat Treatment Committee.  相似文献   

8.
晶粒尺寸对表面渗碳钢疲劳极限的影响   总被引:1,自引:1,他引:0  
利用旋转弯曲疲劳试验方法,研究了渗碳钢的晶粒尺寸与其疲劳极限之间的定量关系。结果表明,晶粒尺寸越小,渗碳钢的疲劳极限越高,晶粒尺寸与疲劳极限之间存在类似Hall-Petch关系。疲劳试样断口观察发现,疲劳裂纹起源于渗碳层,并沿原奥氏体晶界扩展,细化渗碳层晶粒有利于提高疲劳裂纹扩展阻力,因此改善疲劳性能。  相似文献   

9.
Compressive residual stresses can be induced in the surface of quenched and tempered 52100 steel (1 pct carbon, 1.5 pct chromium) by austenitizing in a carburizing atmosphere, even though the austenitizing temperature is well below that needed to dissolve all pri-mary carbides. The carburized surface layer contains a larger volume fraction of pri-mary carbides, more retained austenite and is slightly harder than the interior. Rolling contact fatigue tests show that carburizing can produce a 50 pct improvement in the fa-tigue life of 52100 steel.  相似文献   

10.
One result of contact fatigue of metals, due to the high stress in surface contact zones, is the appearance of dimples on the surface of the case-hardened layer. Contact fatigue depends on a series of factors, the most important of which are thought to be the carbon concentration in the layer, the amount of retained austenite, and the morphology of the carbide phase.[1-4] The literature data concerning the quantitative effect of retained austenite on contact fatigue are contradictory. Vinokuret al.[5] have shown that the temperature of heating before quenching was the greatest influence on contact fatigue, since it determines the solution of carbides, the degree of alloying of the solid solution, and the amount and ratio of structural components. There are almost no data on the critical points for the carburized case or their variation with the carbon content of the case.  相似文献   

11.
Residual stresses in case carburized steels stem from two major sources, both of which are associated with the (rapid) cooling of the steels from elevated temperatures. The first source is the more rapid cooling rate of the surface of the body, as compared with the rate of the interior. The second is the time lag in the transformation of the austenite on cooling between the high carbon and low carbon portions of the carburized body. The as-carburized residual stress intensities and states are altered to varying degrees dur-ing the course of the tests used to measure the mechanical properties. The significant changes take place not only as the result of the strain of the measurement test itself, but also because of the transformation of any austenite retained in the case of the carburized part, and because of stresses developed within the part by virtue of the rheological inter-actions which occur within the part since it is, in essence, a composite material. The resultant observed mechanical performance of the carburized body is the summation of the intrinsic mechanical properties of the material itself, and the effects of the residual stresses as-carburized, and as-altered by the above phenomena. This paper is based on a presentation made at a symposium on “Carburizing and Nitriding: Fundamentals, Processes and Properties” held at the Cincinnati Meeting of the Metallurgical Society of AIME, November 11 and 12,1975 under the sponsorship of the Heat Treatment Committee.  相似文献   

12.
A systematic study of stress-induced and thermal-induced transformation of retained austenite in carburized 4320 steel with an initial retained austenite of 35 pct has been conducted. The transformation was monitored by recording the change in volume of smooth fatigue specimens. Stress-induced transformation was studied by conducting monotonic and cyclic tests at temperatures in the range from 22 °C to 150 °C. The volumetric transformation strain was as large as 0.006 at 22 °C. The anisotropy of the transformation was such that the axial transformation strain component exceeded the diametral transformation strain component by a factor of 1.4. Thermal-induced transformation was investigated with temperature stepup tests in the range from 150 °C to 255 °C at constant stress (-500 MPa, 0 MPa, and 500 MPa) and with static tests where temperature was held constant at zero load. The maximum thermal-induced volumetric transformation strain of 0.006 was independent of stress. However, the anisotropy of the transformation strain components was dependent on stress direction and magnitude. An axial tensile stress increased the axial transformation strain relative to the diametral transformation strain. The influence of low-temperature creep(T = 150 °C) on the anisotropy of strains is noted. The differences between stress-induced and thermal-induced transformation mechanisms are discussed. Thermal-induced transformation primarily occurred at temperatures between 100 °C and 200 °C, with the rate of transformation increasing with temperature, while the stress-induced transformation primarily occurred at 22 °C, with the rate of transformation decreasing with increasing temperature. There was no stress-induced transformation above 60 °C.  相似文献   

13.
The process of ausform-finishing in gears involves the deformation of metastable austenite. A critical step in optimizing the deformation process is to determine the link between material deformation behavior and final material properties, such as hardness and microstructure. To this end, uniaxial compression testing was carried out on 1 pct carburized AISI 9310 steel specimens in the low-temperature ausforming regime (85 °C to 230 °C). The work-hardening response of metastable austenite and its relation to the hardness and microstructure was determined from these experiments. High work-hardening rates (work-hardening exponent n=0.4 to 0.7) were caused by deformation-induced transformation of metastable austenite to either martensite or bainite or both. It is postulated that, at the ausforming temperatures in the neighborhood of 230 °C, bainite formed at the highest achievable strains of 50 pct while oriented martensite (loading induced) was detectable at lower strains of 20 pct. The hardness of the resulting ausformed microstructure increased with degree of straining and with reduction in temperature of ausforming. An X-ray determination of the retained austenite content showed that austenite tends to stabilize even after minimal ausforming. A transmission electron microscopy study on ausformed specimens showed the presence of microtwinning and high-dislocation densities. The effect of processing parameters on fatigue response under rolling contact conditions is discussed given current understanding and available fatigue data.  相似文献   

14.
Microhardness and wear resistance of different rnicrostructures formed by TIG (tungsten inert gas) surface melting and chromium surface alloying (using ferrochromium) of ADI (austempered ductile iron) were studied. Surface melting resulted in the formation of a ledeburitic structure in the melted zone, and this structure has a hardness up to 896 HV as compared to 360 HV in that of ADI. Moreover, chromium surface alloying resulted in the formation of different structures including: (1) a hypereutectic structure consisting of primary (Fe,Cr)7C3 carbides and a eutectic matrix of transformed austenite (into martensite and retained austenite), as also (Fe,Cr)7C3 carbides, with a hardness of 1078 HV; (2) a hypoeutectic structure consisting of the same eutectic along with transformed primary austenite, with a hardness of 755 HV; and (3) a ledeburitic structure with an acicular morphology and a hardness of 896 HV. The results also indicated that surface melting reduced the wear rate of the ADI by approximately 37%. Also, chromium surface alloying yielded a superior wear behavior and reduced the wear rate of the treated specimens by about 38% and 70%, depending on the structures formed.  相似文献   

15.
In this work, the effects of retained austenite on the hydrogen content and the effective hydrogen diffusivity of an otherwise fully martensitic structure have been studied. In the electrochemical permeation experiment, the results on the first permeation transient indicate that high-carbon as-quenched specimens have a lower effective diffusivity than those with an additional subzero treatment. This was due to the presence of retained austenite in the former specimens, which afforded more sites for hydrogen trapping throughout the specimen membrane, hence lowering the hydrogen diffusion during the first transient. As the hydrogen traps were filled up, however, the second permeation transients gave similar effective diffusivity for both as-quenched and quenched + subzero-treated specimens. After hydrogen charging in hydrogen sulfide solution, the hydrogen contents of the specimens were determined using the vacuum hot extraction method. The results show that the hydrogen contents of as-quenched specimens were higher than those of the specimens subjected to quenched + subzero treatment. This again was due to the existence of retained austenite in as-quenched martensitic matrix, where the interfaces between the retained austenite and martensitic plates provided extra sites for hydrogen trapping. The hydrogen content of the presenting retained austenite in the martensite was independent of the carbon content of the specimen, but only depended on the hydrogen-charging period.  相似文献   

16.
Two experimental techniques which can be used to determine accurately the habit plane and orientation of martensite plates in specimens of alloys normally containing no retained austenite are described. One depends upon the use of a parent crystal containing a sharp gradient of nickel concentration and the introduction of deformation twins in the martensite. The other, which can be used for measurements on homogeneous crystals completely transformed to martensite, depends upon the development of annealing twins in large grains of the parent austenite by a sequence of heat treatments prior to transformation. Results of measurements of the habit plane and orientation of plates formed in Fe?Ni and Fe?Ni?C alloys transformed to massivemartensite are reported. These results are compared with predictions of recent crystallographic theories.  相似文献   

17.
摘要:对中碳钢采用Q&P(淬火 碳分配)和I&QP(临界热处理,淬火 碳分配)热处理工艺,通过对试样的显微组织,残余奥氏体的体积分数及其碳含量,硬度及其拉伸性能进行分析,研究了临界加热对中碳Q&P钢组织和性能的影响。实验结果表明,经临界热处理的Q&P钢组织中,除了马氏体和残余奥氏体,还存在部分铁素体,同时残余奥氏体的体积分数较少,马氏体板条更加细小。在相同的碳分配时间下,I&QP试样的硬度和抗拉强度都比Q&P试样低,但由于I&QP试样中软相铁素体的存在以及残余奥氏体能发挥更好的TRIP效应,使得临界热处理的实验钢的伸长率更高,加工硬化指数增加,强塑积更大。  相似文献   

18.
Steels containing 0.15 pct C and 1.2 pct Si-1.5 pct Mn or 4 pct Ni were intercritically annealed and isothermally transformed between 300 °C and 500 °C for 1 to 60 minutes. The specimens were subjected to tensile testing at room temperature, and the microstructures were evaluated by light microscopy, scanning and transmission electron microscopy (SEM and TEM, respectively), and X-ray diffraction (XRD). The microstructures consist of dispersed regions of bainite, martensite, and austenite in a matrix of ferrite, and a maximum of 11.6 pct austenite is retained after isothermal holding at 450 °C in the Si-Mn steel. In specimens where austenite transforms to martensite during quenching after isothermal holding, the stress-strain curves show continuous yielding, high ultimate tensile strength (UTS), and relatively low ductility. In specimens where higher volume fractions of austenite transform to bainite during isothermal holding, the stress-strain curves show discontinuous yielding, low UTS, and high ductility.  相似文献   

19.
对TRIP钢板在单向拉伸、双向拉伸和平面应变3种应变方式下残余奥氏体的体积分数随应变量变化的规律进行了实验研究。结果表明:在变形过程中,残余奥氏体的体积分数随应变量的增加而减小;该变化量不仅与应变量有关,还与应变方式有关;平面应变时变化最大,双向拉伸次之,单向托伸下变化最小。还对同一零件不同区域残余奥氏体的含量对零件形状精度的影响进行了讨论。  相似文献   

20.
In an attempt to understand the role of retained austenite on the cryogenic toughness of a ferritic Fe-Mn-AI steel, the mechanical stability of austenite during cold rolling at room temperature and tensile deformation at ambient and liquid nitrogen temperature was investigated, and the microstructure of strain-induced transformation products was observed by transmission electron microscopy (TEM). The volume fraction of austenite increased with increasing tempering time and reached 54 pct after 650 °C, 1-hour tempering and 36 pct after 550 °C, 16-hour tempering. Saturation Charpy impact values at liquid nitrogen temperature were increased with decreasing tempering temperature, from 105 J after 650 °C tempering to 220 J after 550 °C tempering. The room-temperature stability of austenite varied significantly according to the + γ) region tempering temperature;i.e., in 650 °C tempered specimens, 80 to 90 pct of austenite were transformed to lath martensite, while in 550 °C tempered specimens, austenite remained untransformed after 50 pct cold reductions. After tensile fracture (35 pct tensile strain) at -196 °C, no retained austenite was observed in 650 °C tempered specimens, while 16 pct of austenite and 6 pct of e-martensite were observed in 550 °C tempered specimens. Considering the high volume fractions and high mechanical stability of austenite, the crack blunting model seems highly applicable for improved cryogenic toughness in 550 °C tempered steel. Other possible toughening mechanisms were also discussed. Formerly Graduate Student, Seoul National University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号