首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm.  相似文献   

2.
In this study, the phenol adsorption capacity of cetyltrimethylammonium bromide modified clays (MMT-CTAB) and cetyltrimethylammonium bromide modified pulp tea (WPT-CTAB) were studied. In batch adsorption experiments performed with MMT-CTAB, the effects of parameters such contact time, phenol concentration, pH of solution and adsorbent dosage were investigated. The effect of temperature on phenol adsorption onto MMT-CTAB and WPT-CTAB was examined; equilibrium and thermodynamic studies were completed. The highest phenol removal was found at pH 4.0 for MMT-CTAB and WPT-CTAB. To analyze the kinetics of phenol adsorption onto MMT-CTAB, the pseudo first-order and pseudo second-order kinetic models were applied. The kinetic data fitted better to the pseudo second-order model than the pseudo first-order kinetic model for MMT-CTAB. The characterization of adsorbents in phenol adsorption was clarified with the FTIR technique. Thermodynamic parameters such as ΔH°, ΔS° and ΔG° were calculated for each adsorption process. The adsorption process was found to be exothermic and spontaneous for phenol adsorption by MMT-CTAB and WPT-CTAB. The results were analyzed with the Langmuir, Freundlich, Temkin and Harkins–Jura equations using linearized correlation coefficients at different temperatures. The Langmuir equation was found to best represent the equilibrium data for phenol adsorption onto MMT-CTAB and WPT-CTAB.  相似文献   

3.
The sorption of SPANDS from aqueous solution onto the macroporous polystyrene anion exchangers of weakly basic Amberlyst A-21 and strongly basic Amberlyst A-29 in a batch method was studied. The effect of initial dye concentration and phase contact time was considered to evaluate the sorption capacity of anion exchangers. Equilibrium data were attempted by various adsorption isotherms including the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models. A comparison of kinetic models applied to the adsorption rate constants and equilibrium sorption capacities was made for the Lagergren first-order, pseudo second-order and Morris–Weber intraparticle diffusion kinetic models. The results showed that the adsorption isotherm is in the good agreement with the Langmuir equation and that the adsorption kinetics of SPADNS on both anion exchangers can be best described by the pseudo second-order model.  相似文献   

4.
The adsorption of Congo red (CR) into three new adsorbents including Palladium and silver nanoparticles loaded on activated carbon (Pd NPs-AC, Ag NPs-AC) and zinc oxide nanorods loaded on activated carbon (ZnO-NRs-AC) in a batch method has been studied following the optimization of effective variables including pH, amount of adsorbents and time. The experimental data was fitted to conventional kinetic models including the pseudo first-order and second-order Elovich and intraparticle diffusion model and based on calculated respective parameters such as rate constants, equilibrium adsorption capacities and correlation coefficients. It was found that for all adsorbents the removal process follows the pseudo second other kinetic model with involvement of interparticle diffusion model. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Tempkin and Dubinin and Radushkevich equations and it was found for all adsorbents that the removal process followed the Langmuir isotherm.  相似文献   

5.
Perchlorate removal by quaternary amine modified reed   总被引:3,自引:0,他引:3  
We report a kinetic and equilibrium study of perchlorate adsorption onto giant reed modified by quaternary amine (QA) functional groups in batch reactors. The effect of pH, contact time, and initial perchlorate concentration on removal was investigated. The adsorption capacity for perchlorate was 169 mg/g on the modified reed (MR) particles ranging in size from 100 to 250 μm. The isotherm results were best described by the combined Langmuir-Freundlich equation. Optimum removal occurred in the pH range 3.5-7.0 and was reduced at pH>8.5. The maximum adsorption rate occurred within the first minute of contact and equilibrium was achieved within 7 min. A three-stage adsorption occurred. In stage 1, adsorption was rapid and was controlled by boundary layer diffusion. In stage 2, adsorption was gradual and was controlled by both boundary layer and intraparticle diffusion. In stage 3, adsorption reached a plateau. The kinetic results fit well with a pseudo second-order equation. The adsorption mechanism was explored using Zeta potential analysis and Raman spectroscopy. Zeta potential measurements showed that reed modification enhanced perchlorate removal by increasing the surface potential. Electrostatic attraction between perchlorate anion and positively charged quaternary amine groups on the MR was the primary mechanism responsible for perchlorate removal.  相似文献   

6.
The reuse of dried activated sludge for adsorption of reactive dye   总被引:3,自引:0,他引:3  
Adsorption processes are alternative effective methods for removal of textile dyes from aqueous solutions. The adsorption ability of adsorbent affects by physico-chemical environment for this reason in this paper effect of initial pH, dye concentrations, temperature and dye hydrolyzation were determined in a batch system for removal of reactive dye by dried activated sludge. The Langmuir isotherm model was well described of adsorption reactive dye and maximum monolayer adsorption capacity (at pH 2) of activated sludge was determined as 116, 93 and 71mgg(-1) for 20 degrees , 35 degrees and 50 degrees C, respectively. Initial pH 2, 20 degrees C and 30min contact time are suitable for removal of reactive dyes from aqueous solutions. Activated sludge was characterized by FT-IR analysis and results showed that active sludge has different functional groups and functional groups of activated sludge are able to react with dye molecules in aqueous solution. The pseudo first-order, second-order and intraparticle diffusion kinetics were used to describe the kinetic data. The pseudo second-order kinetic model was fit well over the range of contact times and also an intra particle diffusion kinetic model was fit well but in the first 30min. The dye hydrolyzation was affected adsorption capacity of biomass and adsorption capacity of biomass decreased with dye hydrolyzation from 74 to 38mgg(-1).  相似文献   

7.
Batch experiments were carried out for the sorption of eosin yellow, malachite green and crystal violet onto jute fiber carbon (JFC). The operating variables studied are the initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm by non-linear regression method. Langmuir isotherm was found to be the optimum isotherm for eosin yellow/JFC system and Freundlich isotherm was found to be the optimum isotherm for malachite green/JFC and crystal violet/JFC system at equilibrium conditions. The sorption capacities of eosin yellow, malachite green and crystal violet onto JFC according to Langmuir isotherm were found to 31.49 mg/g, 136.58 mg/g, 27.99 mg/g, respectively. A single stage batch adsorber was designed for the adsorption of eosin yellow, malachite green and crystal violet onto JFC based on the optimum isotherm. A pseudo second order kinetic model well represented the kinetic uptake of dyes studied onto JFC. The pseudo second order kinetic model successfully simulated the kinetics of dye uptake process. The dye sorption process involves both surface and pore diffusion with predominance of surface diffusion at earlier stages. A Boyd plot confirms the external mass transfer as the rate limiting step in the dye sorption process. The influence of initial dye concentration on the dye sorption process was represented in the form of dimensionless mass transfer numbers (Sh/Sc(0.33)) and was found to be agreeing with the expression:  相似文献   

8.
The adsorption of Al(III) from aqueous solutions onto chitosan was studied in a batch system. The isotherms and the kinetics of adsorption with respect to the initial Al(III) concentration and temperature were investigated. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms. Equilibrium data fitted very well to the Langmuir model in the entire concentration range (5-40 mg/L). The negative values of free energy (DeltaG degrees ) and enthalpy (DeltaH degrees ) for the adsorption of Al(III) onto chitosan indicated that the adsorption process is a spontaneous and exothermic one. Two simplified kinetic models, based on pseudo first-order and pseudo second-order equations, were tested to describe the adsorption mechanism. The pseudo second-order kinetic model resulted in an activation energy of 56.4 kJ/mol. It is suggested that the overall rate of Al(III) ion adsorption is likely to be controlled by the chemical process. The values of the enthalpy (DeltaH(#)) and entropy (DeltaS(#)) of activation were 53.7 kJ/mol and -164.4 J/molK, respectively. The free energy of activation (DeltaG(#)) at 30 degrees C was 103.5 kJ/mol.  相似文献   

9.
Adsorption of reactive dyes on calcined alunite from aqueous solutions   总被引:7,自引:0,他引:7  
An attempt to alleviate the problem caused by the presence of reactive dyes in textile effluents was undertaken. Since alunite is a very abundant and inexpensive, we decided to experiment with it as a potential adsorbent for a certain type of the supracited pollutants used in cellulose fibers dyeing. The adsorption of Reactive Blue 114 (RB114), Reactive Yellow 64 (RY64) and Reactive Red 124 (RR124) by calcined alunite was studied by varying parameters such as the calcination temperature and time, particle size, pH, agitation time and dye concentration. Acidic pH was favorable for the adsorption of RB114 and alkaline pH was favorable to both RY64 and RR124. The equilibrium data fit the Langmuir isotherm. The adsorption capacities were found to be 170.7, 236 and 153 mg dye per gram of calcined alunite for RB114, RY64 and RR124, respectively. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data were fitted by the second-order kinetic model, which indicates that chemicalsorption is the rate limiting step, inside of mass transfer.  相似文献   

10.
《工程(英文)》2017,3(3):409-415
Natural adsorbents such as banana pseudostem can play a vital role in the removal of heavy metal elements from wastewater. Major water resources and chemical industries have been encountering difficulties in removing heavy metal elements using available conventional methods. This work demonstrates the potential to treat various effluents utilizing natural materials. A characterization of banana pseudostem powder was performed using environmental scanning electron microscopy (ESEM) and Fourier-transform infrared (FTIR) spectroscopy before and after the adsorption of lead(II). Experiments were carried out using a batch process for the removal of lead(II) from an aqueous solution. The effects of the adsorption kinetics were studied by altering various parameters such as initial pH, adsorbent dosage, initial lead ion concentration, and contact time. The results show that the point of zero charge (PZC) for the banana pseudostem powder was achieved at a pH of 5.5. The experimental data were analyzed using isotherm and kinetic models. The adsorption of lead(II) onto banana pseudostem powder was fitted using the Langmuir adsorption isotherm. The adsorption capacity was found to be 34.21 mg·g–1, and the pseudo second-order kinetic model showed the best fit. The optimum conditions were found using response surface methodology. The maximum removal was found to be 89%.  相似文献   

11.
活性炭负载Fe(Ⅲ)氧化物去除水中的磷酸根   总被引:2,自引:0,他引:2  
利用活性炭负载铁氧化物制备了复合吸附剂,并用于水中磷酸根的去除.采用BET,SEM及XRD等手段对复合吸附剂的物理化学特性进行了表征,用静态吸附实验方法比较研究了复合吸附剂和活性炭从水溶液中吸附磷酸根的性质.结果表明:复合吸附剂具有快的吸附速度和高的吸附容量,其吸附磷酸根的性质受溶液pH值、铁含量及阴离子浓度的影响.在pH=3.0时,复合吸附剂对磷酸根的吸附容量为98.39 mg/g,而活性炭为78.90 mg/g.相比之下,Freundlich模型比Langmuir模型能更好地描述复合吸附剂和活性炭对磷酸根的吸附过程;而Lagergren二级方程却能很好地描述复合吸附剂对磷酸根的吸附动力学.水合氧化铁/活性炭复合吸附剂吸附磷酸根为吸热过程.  相似文献   

12.
An inorganic/organic hybrid adsorbent for phosphate adsorption was synthesized by introducing lanthanum (La) onto diamino modified MCM-41. The adsorbent was characterized by XRD, SEM, BET, TGA, and FTIR spectroscopy. A series of batch tests were conducted to investigate the influence of contact time, initial phosphate concentration, pH of the solution, and competitive ions on the phosphate adsorption capacity. The Langmuir and Freundlich models were used to simulate the sorption equilibrium, and the results indicated that the Langmuir model fitted the experiment data better than the Freundlich model. The maximum adsorption capacity calculated from the Langmuir model is 54.3 mg/g. For kinetic study, phosphate adsorption followed the pseudo-second-order equation well with a correlation coefficient greater than 0.99. Optimum pH value for the removal of phosphate was between 3.0 and 7.0. The presence of Cl(-) and NO(3)(-) has neglectable influence on the phosphate adsorption. F(-)and SO(4)(2-) have negative effects on the adsorption of phosphate. Phosphate on the spent adsorbent can be almost released by 0.01 M NaOH solution in 12 min.  相似文献   

13.
In this study, activated carbon (WA11Zn5) was prepared from waste apricot, which is waste in apricot plants in Malatya, by chemical activation with ZnCl(2). BET surface area of activated carbon is determined as 1060 m(2)/g. The ability of WA11Zn5, to remove naproxen sodium from effluent solutions by adsorption has been studied. Equilibrium isotherms for the adsorption of naproxen sodium on activated carbon were measured experimentally. Results were analyzed by the Langmiur, Freundlich equation using linearized correlation coefficient at 298 K. The characteristic parameters for each isotherm have been determined. Langmiur equation is found to best represent the equilibrium data for naproxen sodium-WA11Zn5 systems. The monolayer adsorption capacity of WA11Zn5 for naproxen sodium was found to be 106.38 mg/g at 298 K. The process was favorable and spontaneous. The kinetics of adsorption of naproxen sodium have been discussed using three kinetic models, i.e., the pseudo first-order model, the pseudo second-order model, the intraparticle diffusion model. Kinetic parameters and correlation coefficients were determined. It was shown that the pseudo second-order kinetic equation could describe the adsorption kinetics for naproxen sodium onto WA11Zn5. The thermodynamic parameters, such as DeltaG degrees , DeltaS degrees and DeltaH degrees, were calculated. The thermodynamics of naproxen sodium-WA11Zn5 system indicates endothermic process.  相似文献   

14.
This paper presents a study on the batch adsorption of basic dye, methylene blue, from aqueous solution (40 mg L(-1)) onto cedar sawdust and crushed brick in order to explore their potential use as low-cost adsorbents for wastewater dye removal. Adsorption isotherms were determined at 20 degrees C and the experimental data obtained were modelled with the Langmuir, Freundlich, Elovich and Temkin isotherm equations. Adsorption kinetic data determined at a temperature of 20 degrees C were modelled using the pseudo-first and pseudo-second-order kinetic equations, liquid-film mass transfer and intra-particle diffusion models. By considering the experimental results and adsorption models applied in this study, it can be concluded that equilibrium data were represented well by a Langmuir isotherm equation with maximum adsorption capacities of 142.36 and 96.61 mg g(-1) for cedar sawdust and crushed brick, respectively. The second-order model best describes adsorption kinetic data. Analysis of adsorption kinetic results indicated that both film- and particle-diffusion are effective adsorption mechanisms. The Influence of temperature and pH of the solution on adsorption process were also studied. The extent of the dye removal decreased with increasing the solution temperature and optimum pH value for dye adsorption was observed at pH 7 for both adsorbents. The results indicate that cedar sawdust and crushed brick can be attractive options for dye removal from dilute industrial effluents.  相似文献   

15.
Review of second-order models for adsorption systems   总被引:25,自引:0,他引:25  
Applications of second-order kinetic models to adsorption systems were reviewed. An overview of second-order kinetic expressions is described in this paper based on the solid adsorption capacity. An early empirical second-order equation was applied in the adsorption of gases onto a solid. A similar second-order equation was applied to describe ion exchange reactions. In recent years, a pseudo-second-order rate expression has been widely applied to the adsorption of pollutants from aqueous solutions onto adsorbents. In addition, the earliest rate equation based on the solid adsorption capacity is also presented in detail.  相似文献   

16.
Batch adsorption studies were carried out for the sorption of C.I. Reactive Black 5, a reactive dye, onto high lime fly ash, obtained from Soma Thermal Power Plant (Turkey), to be low cost adsorbent. The effect of various experimental parameters such as contact time, adsorbent dose and initial dye concentration were investigated. Determination of the adsorption equilibrium concentrations was determined by UV-vis spectrophotometry analytical method. Equilibrium data were fitted to the Freundlich and Langmuir isotherm equations and the equilibrium data were found to be well represented by the Freundlich isotherm equation. The adsorption kinetics of C.I. Reactive Black 5 onto high lime fly ash were also studied to characterize of the surface complexation reaction. A pseudo-second-order mechanism has been developed to predict the rate constant of the adsorption, the equilibrium capacity and initial adsorption rate with the effect of initial concentration. A single-stage batch adsorber design of the adsorption of C.I. Reactive Black 5 onto high lime fly ash has been studied based on the Freundlich isotherm equation.  相似文献   

17.
The biosorption of Cu(II) from aqueous solutions by valonia tannin resin was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmuir isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, the Elovich and the intraparticle diffusion model equation - to determine the best fit equation for the biosorption of copper ions onto valonia tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well.  相似文献   

18.
Adsorption of Crystal violet, a basic dye onto phosphoric and sulphuric acid activated carbons (PAAC and SAAC), prepared from male flowers coconut tree has been investigated. Equilibrium data were successfully applied to study the kinetics and mechanism of adsorption of dye onto both the carbons. The kinetics of adsorption was found to be pseudo second order with regard to intraparticle diffusion. The pseudo second order is further supported by the Elovich model, which in turn intensifies the fact of chemisorption of dye onto both the carbons. Quantitative removal of dye at higher initial pH of dye solution reveals the basic nature of the Crystal violet and acidic nature of the activated carbons. Influence of temperature on the removal of dye from aqueous solution shows the feasibility of adsorption and its endothermic nature. Mass transfer studies were also carried out. The adsorption capacities of both the carbons were found to be 60.42 and 85.84 mg/g for PAAC and SAAC, respectively. Langmuir's isotherm data were used to design single-stage batch adsorption model.  相似文献   

19.
Abstract

In this study, hazelnut shell and walnut shell which are the agricultural wastes existent abundantly in many countries were pyrolyzed at different temperatures in the temperature range of 400–700?°C in order to optimize the physicochemical properties of biochars. The biochars with large surface area were used to removal of lead (Pb2+) ions, one of the most important heavy metal pollutant, from aqueous solutions. The characterization of raw biomass and also biochars produced by pyrolysis were performed using FT-IR, BET, SEM, partial and elemental analysis techniques. In order to determine the adsorption characteristics of both biochars, batch adsorption experiments were carried out under different experimental conditions. The optimum conditions were determined by investigating the effect of adsorption parameters (initial heavy metal concentration, temperature, adsorbent amount, pH, contact time and mixing speed) for efficient removal of Pb2+ ions from aqueous solution. The experimental results were investigated in terms of Langmuir, Freundlich and Temkin isotherm models. Together with the calculated thermodynamic parameters, the adsorption mechanism was tried to be explained. In order to determine the kinetic model of the adsorption process, the experimental data were applied to pseudo first-order, pseudo second-order and intra-particle diffusion model, and the model constants were investigated.  相似文献   

20.
The magnetic-chitosan particle was prepared and characterized by the SEM, XRD, FT-IR and employed as an adsorbent for removal fluoride from the water solution in the batch system. The Langmuir isotherms, Bradley's isotherm, Freundlich isotherm and Dubinin-Kaganer-Radushkevich (DKR) isotherm were used to describe adsorption equilibrium. The kinetic process was investigated using the pseudo-first-order model, pseudo-second-order model and intra-particle diffusion model, respectively. The results show that the magnetic-chitosan particle is amorphous of irregular clumps in the surface with groups of RNH(2), RNH(3), Fe-O, etc. Bradley's equation and two-sites Langmuir isotherms were fitted well with the adsorption equilibrium data; the maximal amount of adsorption of 20.96-23.98 mg/l and free energy of 2.48 kJ/mol were obtained from the Bradley's equation, two-sites Langmuir isotherm and DKR modeling, respectively. The pseudo-second-order with the initial adsorption rate 2.08 mg/g min was suitable to describe the kinetic process of fluoride adsorption onto the adsorbent. In overall, the major mechanism of fluoride adsorption onto the heterogeneous surface of magnetic-chitosan particle was proposed in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号