首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of plasma sprayed coatings of controlled microstructure was obtained by spraying three monosize sapphire powders using an axial injection torch in which the plasma gas composition and nozzle diameter were the only processing parameters varied. The effects of changes in these parameters on the coating splat morphology, porosity, angular crack distribution, and hardness are reported. The uniform, dense microstructure and the high hardness of 14 GPa (a level usually only associated with chromia thermal spray coatings) of the best alumina coatings resulted from using tightly controlled processing conditions and monodispersed precursor powders. The microstructural quality of plasma sprayed coatings and, hence, the coating properties can be improved significantly by minimizing variations in processing and raw material parameters. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

2.
Different posttreatment methods, such as heat treatment, mechanical processing, sealing, etc., are known to be capable to improve microstructure and exploitation properties of thermal spray coatings. In this work, a plasma electrolytic oxidation of aluminum coatings obtained by arc spraying on aluminum and carbon steel substrates is carried out. Microstructure and properties of oxidized layers formed on sprayed coating as well as on bulk material are investigated. Oxidation is performed in electrolyte containing KOH and liquid glass under different process parameters. It is shown that thick uniform oxidized layers can be formed on arc-sprayed aluminum coatings as well as on solid material. Distribution of alloying elements and phase composition of obtained layers are investigated. A significant improvement of wear resistance of treated layers in two types of abrasive wear conditions is observed. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

3.
High-temperature thermal fatigue causes the failure of thermal barrier coating (TBC) systems. This paper addresses the development of thick TBCs, focusing on the microstructure and the porosity of the yttria partially stabilized zirconia (YPSZ) coating, regarding its resistance to thermal fatigue. Thick TBCs, with different porosity levels, were produced by means of a CoNiCrAlY bond coat and YPSZ top coat, both had been sprayed by air plasma spray. The thermal fatigue resistance of new TBC systems and the evolution of the coatings before and after thermal cycling was then evaluated. The limit of thermal fatigue resistance increases depending on the amount of porosity in the top coat. Raman analysis shows that the compressive in-plane stress increases in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend which is contrary to the porosity level of top coat. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

4.
5.
Thermal spraying is a widely used technology for industrial applications to provide coatings that improve the surface characteristics. According to the specificities of processes (APS, VPS, flame, electric arc), any kind of material can be sprayed. Among materials, ceramic coatings present several interesting aspects such as wear resistance, corrosion protection as well as thermal or electrical insulation; particularly alumina coatings which appear as the most commonly used. From all spraying processes, atmospheric plasma spraying (APS) is a rather well-established process but some others can also be used with a lower economical impact such as the flame technology. The aim of this study was to analyze the alumina coating properties according to the technology employed such as APS or wire flame spraying using the Rokide™ and the Master Jet? guns. After micrographic analyses by SEM, physical and mechanical properties were measured considering the thermal conductivity and the hardness. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

6.
In previous studies, it has been demonstrated that nanostructured Al2O3-13 wt.%TiO2 coatings deposited via air plasma spray (APS) exhibit higher wear resistance when compared to that of conventional coatings. This study aimed to verify if high-velocity oxy-fuel (HVOF)-sprayed Al2O3-13 wt.%TiO2 coatings produced using hybrid (nano + submicron) powders could improve even further the already recognized good wear properties of the APS nanostructured coatings. According to the abrasion test results (ASTM G 64), there was an improvement in wear performance by a factor of 8 for the HVOF-sprayed hybrid coating as compared to the best performing APS conventional coating. When comparing both hybrid and conventional HVOF-sprayed coatings, there was an improvement in wear performance by a factor of 4 when using the hybrid material. The results show a significant antiwear improvement provided by the hybrid material. Scanning electron microscopy (SEM) at low/high magnifications showed the distinctive microstructure of the HVOF-sprayed hybrid coating, which helps to explain its excellent wear performance. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

7.
The plasma sprya deposition of a zirconia thermal barrier coating (TBC) on a gas turbine component was examined using analytical and experimental techniques. The coating thickness was simulated by the use of commercial off-line software. The impinging jet was modeled by means of a finite difference elliptic code using a simplified turbulence model. Powder particle velocity, temperature history, and trajectory were calculated using a stochastic discrete particle model. The heat transfer and fluid flow model were then used to calculate transient coating and substrate temperatures using the finite element method. The predicted thickness, temperature, and velocity of the particles and the coating temperatures were compared with these measurements, and good correlations were obtained. The coating microstructure was evaluated by optical and scanning microscopy techniques. Special attention was paid to the crack structures within the top coating. Finally, the correlation between the modeled parameters and the deposit microstructure was studied. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

8.
In this article, we proposed a rapid and continuous process for the production of nanoporous coatings for functional applications. Experiments following two statistical designs were implemented to screen and investigate the spraying parameters’ effects on coating crystallinity and porosity in order to gain a better understanding. The spraying standoff distance, solution flow rate and power were identified as having significant effects on coating porosity and crystallinity. The result yielded a peculiar microstructure comprised of interpenetrating pores and layered structures with embedded pores. A deposition mechanism was postulated to explain this microstructure. Ethanol gas sensors that are constructed from the coatings had comparable sensitivities to those reported in the literature for thick-film coatings and had a maximum sensitivity near 200 °C. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

9.
目的提高金属/陶瓷隔热涂层体系在海洋环境下的耐腐蚀性能。方法利用冷喷涂方法制备NiAl复合打底层和Ni CoCrAlY粘结层,与等离子喷涂制备的8YSZ陶瓷层构成适用于海洋环境的多层结构耐蚀隔热涂层体系。利用FE-SEM分别观察喷涂态粘结层和陶瓷层的表面、横截面形貌,通过EDS分析涂层元素分布;利用XRD分析表征涂层的物相组成;借助万能材料试验机,采用拉伸法测试涂层结合强度;利用热循环试验和焰流冲刷试验测试涂层的耐高温性能。结果微观分析表明,冷喷涂制备的NiAl复合打底层和Ni CoCrAlY粘结层形貌致密,涂层材料未发生明显氧化,颗粒变形程度不一,粘结层与基体间的结合强度约为18.4 MPa,粘结层与8YSZ陶瓷层界面结合紧密。陶瓷层物相结构和成分稳定,涂层经12次热震循环和1000个周期的高温焰流冲击后,表面未出现开裂、起皮和脱落。结论采用冷喷涂法和等离子喷涂法联合制备的耐蚀隔热复合涂层体系具备良好的耐热性和耐腐蚀性。冷喷涂制备的金属涂层结构致密,孔隙率低,与陶瓷层结合良好,能够有效提高涂层体系在腐蚀性环境中的耐蚀性能。NiAl复合涂层可以缓解Ni CoCrAlY粘结层和铝合金基材间的热匹配问题,增强涂层的结合性能。  相似文献   

10.
It is difficult to deposit dense intermetallic compound coatings by cold spraying directly using the compound feedstock powders due to their intrinsic low-temperature brittleness. A method to prepare intermetallic compound coatings in-situ employing cold spraying was developed using a metastable alloy powder assisted with post-heat treatment. In this study, a nanostructured Fe/Al alloy powder was prepared by ball-milling process. The cold-sprayed Fe/Al alloy coating was evolved in-situ to intermetallic compound coating through a post-heat treatment. The microstructural evolution of the Fe-40Al powder during mechanical alloying and the effect of the post-heat treatment on the microstructure of the cold-sprayed Fe(Al) coating were characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy (TEM), and x-ray diffraction analysis. The results showed that the milled Fe-40Al powder exhibits lamellar microstructure. The microstructure of the as-sprayed Fe(Al) coating depends significantly on that of the as-milled powder. The heat-treatment temperature significantly influences the in-situ evolution of the intermetallic compound. The heat treatment at a temperature of 500 °C results in the complete transformation of Fe(Al) solid solution to FeAl intermetallic compound. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

11.
A new type of thermal barrier coating (TBC) based on metal-glass composite (MGC) consisting of an ordinary container glass and a NiCoCrAlY-alloy has been recently presented. This TBC material provides the possibility to easily adjust its thermal expansion coefficient to match the substrate by changing the metal to glass ratio of the composite. Vacuum plasma spraying (VPS) has been applied as a possible technologies for deposition of MGC coatings. Isothermal oxidation tests were carried out in air at temperatures of 950, 1000, and 1050 °C, respectively. Thermal cycling tests were carried out by applying a temperature gradient across the sample thickness by heating with an open flame of natural gas followed by removal of the burner and air cooling. Changes in the microstructure were examined by means of microscopy, microanalysis, and x-ray powder diffraction. For long-time annealing at high temperatures, a progressive degradation of the glass matrix as well as oxidation of the metal phases cannot be fully suppressed up to now. By lowering the effective temperature at the MGC layer when used as an intermediate layer, the degradation of the MGC can be reduced without losing its advanced features with respect to creeping and gas-tightness. Additional concepts for improved oxidation resistance of the MGC based on suitable heat treatments and on alternative glass compositions have been developed, and primary results are shown. Evaluation of results from isothermal oxidation experiments and from thermal cycling in burner-rig facilities validates a clear improvement of the lifetime of the coatings compared with earlier results. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

12.
This article describes variations in the microstructure/composition and mechanical properties in plasma sprayed CoCrAlY coatings and a modified René 80 substrate of gas turbine blades operated for 21,000 h under liquefied natural gas fuels. Substantial oxidation/carbonization occurred in the near surface region of concave coatings, but not in the convex coatings. Aluminum and nickel/titanium-rich nitrides formed in near interface coatings and substrates of concave side of blades, respectively. Small punch (SP) specimens were prepared from the different blade location to examine the variation of the mechanical properties in the coatings. In SP tests, brittle cracks in the near surface and interface coatings of the concave side easily initiated up to 950 °C. The convex coatings exhibited higher ductility than the concave coatings and substrate and showed a rapid increase in the ductility above 800 °C. Thus it is apparent that the oxidation/carbonization and nitridation in the concave coatings produced a significant loss of the ductility. The in-service degradation mechanism of the CoCrAlY coatings is discussed in light of the operating temperature distribution and compared to that of CoNiCrAlY coatings induced by grain boundary sulfidation/oxidation. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

13.
The effect of particle size distribution on the degradation behavior of plasma sprayed CoNi- and CoCrAlY coatings during isothermal oxidation was investigated, in terms of the oxygen content, porosity, surface roughness, and oxide scale formation. The results show that the degradation of both coatings was considerably influenced by the starting particle size distribution. It also shows that in the as-sprayed vacuum plasma spray (VPS) coatings the oxygen content on the coating surface increased significantly with decreased average particle size. But after thermal exposure, the difference of the oxygen contents between the coatings with different particle size was decreased. The powder with various particle size resulted in low porosity inside the coatings during the deposition process. The surface roughness of the coatings increased with increased particle size. The small particles produced a relatively smooth surface, and the oxide growth in the coating deposited by small particle was slower than that in the large particle coating. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

14.
The thermal spraying assisted by laser (PROTAL) process combines a laser surface preparation followed by a thermal spray process. This type of surface preparation avoids some drawbacks of the degreasing and sand blasting processes. Previous studies showed that the adhesion of the deposits obtained with the help of the PROTAL process is similar to that achieved by traditional surface preparation. To obtain better insight into the effects of the laser treatment, a Ni−5%Al coating was plasma sprayed using the PROTAL process under different surface conditions. The morphology of the impinging splats and adhesion of the deposits were examined. Removal of contaminants, adsorbates, and oxides at substrate surface is confirmed. The role of the laser irradiation on the coating adhesion is discussed. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

15.
通过高效能超音速等离子喷涂(SAPS)制备WC-Co及WC-Ni Cr金属陶瓷涂层,对比研究了2种涂层的抗冲蚀性能及在热腐蚀条件下的结构和性能演变。结果表明:2种涂层在喷涂过程中均会发生一定程度的脱碳,表现为W_2C相的形成;同时在WC-Co涂层中有少量的Co_3W_3C和Co_6W_6C相生成,且该涂层在热腐蚀后表层的WC相出现了分解与氧化,形成了W_3C、W_6C_(2.54)等脱碳相与CoWO_4、WO_3等氧化物相。在普通冲蚀条件下,WC-Co涂层的抗冲蚀性能更为优异,但热腐蚀会极大降低WC-Co涂层的抗冲蚀性能;与之相反,WC-NiCr涂层中的NiCr相在热腐蚀环境下生成的Cr_2O_3可以有效阻挡涂层内部与外部之间的物质扩散,从而降低了热腐蚀对涂层结构的破坏,在热腐蚀条件下表现出了优良的抗冲蚀性能。  相似文献   

16.
姚斌  周海  陈飞  杨钧 《金属热处理》2004,29(10):17-19
采用等离子喷涂方法在TiAl合金表面喷涂,得到由CoNiCrAlY粘结层和(ZrO2 Y2O3)陶瓷外层组成的双层结构的热障涂层。对涂层进行了高温抗氧化试验,并用SEM和金相法观察和分析了涂层的组织及形貌。结果表明,经喷涂后试样的高温抗氧化能力显著提高。  相似文献   

17.
The present work evaluates the oxidation and hot corrosion resistance of high velocity oxy-fuel (HVOF) sprayed WC-NiCrFeSiB coating deposited on Ni-based superalloy (Superni 75) and Fe-based superalloy (Superfer 800H). The coated as well as uncoated specimens were exposed to air and molten salt (Na2SO4-25% NaCl) environment at 800 °C under cyclic conditions. The thermogravimetric technique was used to establish the kinetics of corrosion. The corrosion products were characterized using the combined techniques of x-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe micro analyser (EPMA). The WC-NiCrFeSiB coating provides necessary resistance against oxidation and hot corrosion to both the nickel and iron-based superalloys in the given environmental conditions at 800 °C. The oxides of active elements of the coatings, formed in the surface scale as well as at the boundaries of nickel and tungsten rich splats, have contributed for the oxidation and hot corrosion resistance of WC-NiCrFeSiB coatings, as these oxides act as barriers for the diffusion/penetration of the corrosive species through the coatings. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

18.
New attachment for controlling gas flow in the HVOF process   总被引:1,自引:0,他引:1  
During the decade, the high-velocity oxyfuel (HVOF) process proved to be a technological alternative to the many conventional thermal spray processes. It would be very advantageous to design a nozzle that provides improved performance in the areas of deposition efficiency, particle in-flight oxidation, and flexibility to allow deposition of ceramic coatings. Based on a numerical analysis, a new attachment to a standard HVOF torch was modeled, designed, tested, and used to produce thermal spray coatings according to the industrial needs mentioned above. Performance of the attachment was investigated by spraying several coating materials including metal and ceramic powders. Particle conditions and spatial distribution, as well as gas phase composition, corresponding to the new attachment and the standard HVOF gun, were compared. The attachment provides better particle spatial distribution, combined with higher particle velocity and temperature. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), 5–8 May, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

19.
Cold spraying: Innovative layers for new applications   总被引:1,自引:0,他引:1  
In recent years, results of many studies have been published that enhance understanding of the fundamental mechanisms of cold-spray coating generation and bonding as well as coating characteristics. From the points of view of a job shop in thermal spraying and of a user of cold-spraying equipment, a procedure, being used in development of new applications is presented herein. In addition to the technical requirements, some general factors determining the success of industrial use of spraying are shown. Examples of coldsprayed coatings are described to shos both the possibility of rapid integration of this new technique in established coating jobs as wells as exploration and use of new possibilities in cold spraying and development of applications that have not yet been a focus of thermal spray techniques. Suggestions for further research and development activities are made on the basis of practical cold-spray experience. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, Internaltional Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

20.
国际公认的重型燃气轮机制造尖端技术之一—热障涂层技术,高温下通常面临CMAS(CaO-MgO-Al2O3-SiO2)腐蚀、氧化、相变与烧结等问题,其抗CMAS腐蚀性等关键性能极大地影响涂层寿命,提高热障涂层的性能刻不容缓。对重型燃气轮机用热障涂层的研究进展与发展趋势进行全面总结与分析。首先介绍国内外重型燃气轮机的现状及发展趋势、热障涂层的系统结构、材料和几种典型的制备工艺,然后针对高温下燃气轮机热障涂层遇到的一些问题,对其隔热性、抗氧化性及抗热震性等关键性能的研究进展进行综述,最后分类详述热障涂层的CMAS腐蚀机理及其防护研究进展。综述热障涂层的几种关键性能,提出热障涂层的性能与其材料、结构及制备工艺密切相关,据此总结归纳提高热障涂层性能的方法,为热障涂层性能的提高提供参考依据,以弥补燃气轮机热障涂层领域目前缺乏这类综述文章的不足。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号