首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze the effect of finite rate feedback on code-division multiple-access (CDMA) signature optimization and multiple-input multiple-output (MIMO) beamforming vector selection. In CDMA signature optimization, for a particular user, the receiver selects a signature vector from a codebook to best avoid interference from other users, and then feeds the corresponding index back to the specified user. For MIMO beamforming vector selection, the receiver chooses a beamforming vector from a given codebook to maximize the instantaneous information rate, and feeds back the corresponding index to the transmitter. These two problems are dual: both can be modeled as selecting a unit norm vector from a finite size codebook to ldquomatchrdquo a randomly generated Gaussian matrix. Assuming that the feedback link is rate limited, our main result is an exact asymptotic performance formula where the length of the signature/beamforming vector, the dimensions of interference/channel matrix, and the feedback rate approach infinity with constant ratios. The proof rests on the large deviations of the underlying random matrix ensemble. Further, we show that random codebooks generated from the isotropic distribution are asymptotically optimal not only on average, but also in probability.  相似文献   

2.
Given a multiple-input multiple-output (MIMO) channel, feedback from the receiver can be used to specify a transmit precoding matrix, which selectively activates the strongest channel modes. Here we analyze the performance of random vector quantization (RVQ), in which the precoding matrix is selected from a random codebook containing independent, isotropically distributed entries. We assume that channel elements are independent and identically distributed (i.i.d.) and known to the receiver, which relays the optimal (rate-maximizing) precoder codebook index to the transmitter using $B$ bits. We first derive the large system capacity of beamforming (rank-one precoding matrix) as a function of $B$, where large system refers to the limit as $B$ and the number of transmit and receive antennas all go to infinity with fixed ratios. RVQ for beamforming is asymptotically optimal, i.e., no other quantization scheme can achieve a larger asymptotic rate. We subsequently consider a precoding matrix with arbitrary rank, and approximate the asymptotic RVQ performance with optimal and linear receivers (matched filter and minimum mean squared error (MMSE)). Numerical examples show that these approximations accurately predict the performance of finite-size systems of interest. Given a target spectral efficiency, numerical examples show that the amount of feedback required by the linear MMSE receiver is only slightly more than that required by the optimal receiver, whereas the matched filter can require significantly more feedback.   相似文献   

3.
The full diversity gain provided by a multi-antenna channel can be achieved by transmit beamforming and receive combining. This requires the knowledge of channel state information (CSI) at the transmitter which is difficult to obtain in practice. Quantized beamforming where fixed codebooks known at both the transmitter and the receiver are used to quantize the CSI has been proposed to solve this problem. Most recent works focus attention on limited feedback codebook design for the uncorrelated Rayleigh fading channel. Such designs are sub-optimal when used in correlated channels. In this paper, we propose systematic codebook design for correlated channels when channel statistical information is known at the transmitter. This design is motivated by studying the performance of pure statistical beamforming in correlated channels and is implemented by maps that can rotate and scale spherical caps on the Grassmannian manifold. Based on this study, we show that even statistical beamforming is near-optimal if the transmitter covariance matrix is ill-conditioned and receiver covariance matrix is well-conditioned. This leads to a partitioning of the transmit and receive covariance spaces based on their conditioning with variable feedback requirements to achieve an operational performance level in the different partitions. When channel statistics are difficult to obtain at the transmitter, we propose a universal codebook design (also implemented by the rotation-scaling maps) that is robust to channel statistics. Numerical studies show that even few bits of feedback, when applied with our designs, lead to near perfect CSI performance in a variety of correlated channel conditions.  相似文献   

4.
Signature optimization for CDMA with limited feedback   总被引:2,自引:0,他引:2  
We study the performance of joint signature-receiver optimization for direct-sequence code-division multiple access (DS-CDMA) with limited feedback. The receiver for a particular user selects the signature from a signature codebook, and relays the corresponding B index bits to the transmitter over a noiseless channel. We study the performance of a random vector quantization (RVQ) scheme in which the codebook entries are independent and isotropically distributed. Assuming the interfering signatures are independent, and have independent and identically distributed (i.i.d.) elements, we evaluate the received signal-to-interference plus noise ratio (SINR) in the large system limit as the number of users, processing gain, and feedback bits B all tend to infinity with fixed ratios. This SINR is evaluated for both the matched filter and linear minimum mean-squared error (MMSE) receivers. Furthermore, we show that this large system SINR is the maximum that can be achieved over any sequence of codebooks. Numerical results show that with the MMSE receiver, one feedback bit per signature coefficient achieves close to single-user performance. We also consider a less complex and suboptimal reduced-rank signature optimization scheme in which the user's signature is constrained to lie in a lower dimensional subspace. The optimal subspace coefficients are scalar-quantized and relayed to the transmitter. The large system performance of the quantized reduced-rank scheme can be approximated, and numerical results show that it performs in the vicinity of the RVQ bound. Finally, we extend our analysis to the scenario in which a subset of users optimize their signatures in the presence of random interference.  相似文献   

5.
Transmit beamforming and receive combining are simple methods for exploiting spatial diversity in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system. Optimal beamforming requires channel state information in the form of the beamforming vectors for each OFDM subcarrier. This paper proposes a limited feedback architecture that combines beamforming vector quantization and smart vector interpolation. In the proposed system, the receiver sends a fraction of information about the optimal beamforming vectors to the transmitter and the transmitter computes the beamforming vectors for all subcarriers through interpolation. A new spherical interpolator is developed that exploits parameters for phase rotation to satisfy the phase invariance and unit norm properties of the transmitted beamforming vectors. The beamforming vectors and phase parameters are quantized at the receiver and the quantized information is provided to the transmitter. The proposed quantization system provides only a moderate increase in complexity versus over comparable approaches. Numerical simulations show that the proposed scheme performs better than existing diversity techniques with the same feedback data rate.  相似文献   

6.
We consider a MIMO broadcast channel where both the transmitter and receivers are equipped with multiple antennas. Channel state information at the transmitter (CSIT) is obtained through limited (i.e., finite-bandwidth) feedback from the receivers that index a set of precoding vectors contained in a predefined codebook. We propose a novel transceiver architecture based on zero-forcing beamforming and linear receiver combining. The receiver combining and quantization for CSIT feedback are jointly designed in order to maximize the expected SINR for each user. We provide an analytic characterization of the achievable throughput in the case of many users and show how additional receive antennas or higher multiuser diversity can reduce the required feedback rate to achieve a target throughput.We also propose a design methodology for generating codebooks tailored for arbitrary spatial correlation statistics. The resulting codebooks have a tree structure that can be utilized in time-correlated MIMO channels to significantly reduce feedback overhead. Simulation results show the effectiveness of the overall transceiver design strategy and codebook design methodology compared to prior techniques in a variety of correlation environments.  相似文献   

7.
We investigate an adaptive MIMO-OFDM system with a feedback link that can only convey a finite number of bits. We consider three different transmitter configurations: i) beamforming applied per OFDM subcarrier, ii) precoded spatial multiplexing applied per subcarrier, and iii) precoded orthogonal space time block coding applied per subcarrier. Depending on the channel realization, the receiver selects the optimal beamforming vector or precoding matrix from a finite-size codebook on each subcarrier, and informs the transmitter through finite-rate feedback. Exploiting the fact that the channel responses across OFDM subcarriers are correlated, we propose two methods to reduce the amount of feedback. One is recursive feedback encoding that selects the optimal beamforming/precoding choices sequentially across the subcarriers, and adopts a smaller-size time-varying codebook per subcarrier depending on prior decisions. The other is trellis-based feedback encoding that selects the optimal decisions for all subcarriers at once along a trellis structure via the Viterbi algorithm. Our methods are applicable to different transmitter configurations in a unified fashion. Simulation results demonstrate that the trellis-based approach outperforms the recursive method as well as an existing interpolation-based alternative at high signal-to-noise-ratio, as the latter suffers from "diversity loss"  相似文献   

8.
Multiple-input multiple-output (MIMO) wireless systems can achieve significant diversity and array gain by using transmit beamforming and receive combining techniques. In the absence of full channel knowledge at the transmitter, the transmit beamforming vector can be quantized at the receiver and sent to the transmitter using a low-rate feedback channel. In the literature, quantization algorithms for the beamforming vector are designed and optimized for a particular channel distribution, commonly the uncorrelated Rayleigh distribution. When the channel is not uncorrelated Rayleigh, however, these quantization strategies result in a degradation of the receive signal-to-noise ratio (SNR). In this paper, switched codebook quantization is proposed where the codebook is dynamically chosen based on the channel distribution. The codebook adaptation enables the quantization to exploit the spatial and temporal correlation inherent in the channel. The convergence properties of the codebook selection algorithm are studied assuming a block-stationary model for the channel. In the case of a nonstationary channel, it is shown using simulations that the selected codebook tracks the distribution of the channel resulting in improvements in SNR. Simulation results show that in the case of correlated channels, the SNR performance of the link can be significantly improved by adaptation, compared with nonadaptive quantization strategies designed for uncorrelated Rayleigh-fading channels  相似文献   

9.
In the transmitting, beamforming, and receiving combing (TBRC) MIMO system, a codebook based feedback strategy is usually used to provide the transmitter with the beamforming vector. The adopted codebook affects the system performance considerably. Therefore, the codebook design is a key technology in the TBRC MIMO system. In this article, the unitary space vector quantization (USVQ) codebook design criterion is proposed to design optimal codebooks for various spatial correlated MIMO channels. And the unitary space K-mean (USK) codebook generating algorithm is provided to generate the USVQ codebooks. Simulations show that the capacities of the feedback based TBRC systems using USVQ codebooks are very close to those of the ideal cases.  相似文献   

10.
We consider the design of multiple-input multiple-output communication systems with a linear precoder at the transmitter, zero-forcing decision feedback equalization (ZFDFE) at the receiver, and a low-rate feedback channel that enables communication from the receiver to the transmitter. The channel state information (CSI) available at the receiver is assumed to be perfect, and based on this information the receiver selects a suitable precoder from a codebook and feeds back the index of this precoder to the transmitter. Our approach to the design of the components of this limited feedback scheme is based on the development, herein, of a unified framework for the joint design of the precoder and the ZF-DFE under the assumption that perfect CSI is available at both the transmitter and the receiver. The framework is general and embraces a wide range of design criteria. This framework enables us to characterize the statistical distribution of the optimal precoder in a standard Rayleigh fading environment. Using this distribution, we show that codebooks constructed from Grassmann packings minimize an upper bound on an average distortion measure, and hence are natural candidates for the codebook in limited feedback systems. Our simulation studies show that the proposed limited feedback scheme can provide significantly better performance at a lower feedback rate than existing schemes in which the detection order is fed back to the transmitter.  相似文献   

11.
The theory of multiple-input–multiple-output (MIMO) technology has been well developed to increase fading channel capacity over single-input–single-output (SISO) systems. This capacity gain can often be leveraged by utilizing channel state information at the transmitter and the receiver. Users make use of this channel state information for transmit signal adaptation. In this correspondence, we derive the capacity region for the MIMO multiple access channel (MIMO MAC) when partial channel state information is available at the transmitters, where we assume a synchronous MIMO multiuser uplink. The partial channel state information feedback has a cardinality constraint and is fed back from the basestation to the users using a limited rate feedback channel. Using this feedback information, we propose a finite codebook design method to maximize the sum rate. In this correspondence, the codebook is a set of transmit signal covariance matrices. We also derive the capacity region and codebook design methods in the case that the covariance matrix is rank one (i.e., beamforming). This is motivated by the fact that beamforming is optimal in certain conditions. The simulation results show that when the number of feedback bits increases, the capacity also increases. Even with a small number of feedback bits, the performance of the proposed system is close to an optimal solution with the full feedback.   相似文献   

12.
Design and analysis of transmit-beamforming based on limited-rate feedback   总被引:4,自引:0,他引:4  
This paper deals with design and performance analysis of transmit beamformers for multiple-input multiple-output (MIMO) systems based on bandwidth-limited information that is fed back from the receiver to the transmitter. By casting the design of transmit beamforming based on limited-rate feedback as an equivalent sphere vector quantization (SVQ) problem, multiantenna beamformed transmissions through independent and identically distributed (i.i.d.) Rayleigh fading channels are first considered. The rate-distortion function of the vector source is upper-bounded, and the operational rate-distortion performance achieved by the generalized Lloyd's algorithm is lower-bounded. Although different in nature, the two bounds yield asymptotically equivalent performance analysis results. The average signal-to-noise ratio (SNR) performance is also quantified. Finally, beamformer codebook designs are studied for correlated Rayleigh fading channels, and a low-complexity codebook design that achieves near-optimal performance is derived.  相似文献   

13.
Transmit beamforming and receive combining are low complexity, linear techniques that make use of the spatial diversity advantage provided by transmitters and/or receivers employing multiple antennas. There has been a growing interest in designing beamforming schemes for frequency division duplexing systems that use a limited amount of feedback from the receiver to the transmitter. This limited feedback conveys a beamforming vector chosen from a finite set known to both the transmitter and receiver. These techniques often use a set of beamforming vectors where the probability of error expression can not be easily formulated or bounded. It is of utmost importance to guarantee that the sets of beamforming and combining vectors are chosen such that full diversity order is achieved. For this reason, necessary and sufficient conditions on the sets of possible beamformers and combiners are derived that guarantee full diversity order in correlated Rayleigh fading.  相似文献   

14.
OFDM power loading using limited feedback   总被引:1,自引:0,他引:1  
Orthogonal frequency division multiplexing (OFDM) is a practical broadband signaling technique for use in multipath fading channels. Over the past ten years, research has shown that power loading, where the power allocations on the OFDM frequency tones are jointly optimized, can improve error rate or capacity performance. The implementation of power loading, however, is dependent on the presence of complete forward link channel knowledge at the transmitter. In systems using frequency division duplexing (FDD), this assumption is unrealistic. In this paper, we propose power loading for OFDM symbols using a limited number of feedback bits sent from the receiver to the transmitter. The power loading vector is designed at the receiver, which is assumed to have perfect knowledge of the forward link channel, and conveyed back to the transmitter over a limited rate feedback channel. To allow for the vector to be represented by a small number of bits, the power loading vector is restricted to lie in a finite set, or codebook, of power loading vectors. This codebook is designed offline and known a priori to both the transmitter and receiver. We present two power allocation selection algorithms that optimize the probability of symbol error and capacity, respectively. Simulation results show that the proposed limited feedback techniques provide performance close to full channel knowledge power loading.  相似文献   

15.
Limited or finite rate, feedback is an efficient way to implement beamforming in multiple antenna systems using frequency division duplexing. Unfortunately, closed-form performance analysis of limited feedback beamforming has not been investigated. This paper provides an analytical framework for the correlated limited feedback beamforming problem by treating selection of the beamforming vector from the codebook as a multibranch selection problem.  相似文献   

16.
Quantization Methods for Equal Gain Transmission With Finite Rate Feedback   总被引:1,自引:0,他引:1  
We consider the design and analysis of quantizers for equal gain transmission (EGT) systems with finite rate feedback-based communication in flat-fading multiple input single output (MISO) systems. EGT is a beamforming technique that maximizes the MISO channel capacity when there is an equal power-per-antenna constraint at the transmitter, and requires the feedback of t-1 phase angles, when there are t antennas at the transmitter. In this paper, we contrast two popular approaches for quantizing the phase angles: vector quantization (VQ) and scalar quantization (SQ). On the VQ side, using the capacity loss with respect to EGT with perfect channel information at transmitter as performance metric, we develop a criterion for designing the beamforming codebook for quantized EGT (Q-EGT). We also propose an iterative algorithm based on the well-known generalized Lloyd algorithm, for computing the beamforming vector codebook. On the analytical side, we study the performance of Q-EGT and derive closed-form expressions for the performance in terms of capacity loss and outage probability in the case of i.i.d. Rayleigh flat-fading channels. On the SQ side, assuming uniform scalar quantization and i.i.d. Rayleigh flat-fading channels, we derive the high-resolution performance of quantized EGT and contrast the performance with that of VQ. We find that although both VQ and SQ achieve the same rate of convergence (to the capacity with perfect feedback) as the number of feedback bits B increases, there exists a fixed gap between the two  相似文献   

17.
Limited feedback unitary precoding for orthogonal space-time block codes   总被引:6,自引:0,他引:6  
Orthogonal space-time block codes (OSTBCs) are a class of easily decoded space-time codes that achieve full diversity order in Rayleigh fading channels. OSTBCs exist only for certain numbers of transmit antennas and do not provide array gain like diversity techniques that exploit transmit channel information. When channel state information is available at the transmitter, though, precoding the space-time codeword can be used to support different numbers of transmit antennas and to improve array gain. Unfortunately, transmitters in many wireless systems have no knowledge about current channel conditions. This motivates limited feedback precoding methods such as channel quantization or antenna subset selection. This paper investigates a limited feedback approach that uses a codebook of precoding matrices known a priori to both the transmitter and receiver. The receiver chooses a matrix from the codebook based on current channel conditions and conveys the optimal codebook matrix to the transmitter over an error-free, zero-delay feedback channel. A criterion for choosing the optimal precoding matrix in the codebook is proposed that relates directly to minimizing the probability of symbol error of the precoded system. Low average distortion codebooks are derived based on the optimal codeword selection criterion. The resulting design is found to relate to the famous applied mathematics problem of subspace packing in the Grassmann manifold. Codebooks designed by this method are proven to provide full diversity order in Rayleigh fading channels. Monte Carlo simulations show that limited feedback precoding performs better than antenna subset selection.  相似文献   

18.
通过研究有限反馈波束赋形蜂窝系统中小区间同信道干扰变化的特性,提出了一种基于机会通信的有限权值机会波束方法。该方法通过在预先设计的有限数量的赋形权值码本中随机选择赋形权值,使目标小区的干扰变化与邻小区用户调度无关,从而使干扰测量和速率预测更为准确,降低了反馈时延和干扰变化造成的中断率。理论分析和仿真均表明:采用正比公平调度的有限权值机会波束与有限反馈波束赋形具有相近的发射速率,从而系统吞吐量得到提高。  相似文献   

19.
Grassmannian beamforming for MIMO amplify-and-forward relaying   总被引:2,自引:0,他引:2  
We consider the problem of beamforming codebook design for limited feedback half-duplex multiple-input multiple output (MIMO) amplify-and-forward (AF) relay system. In the first part of the paper, the direct link between the source and the destination is ignored. Assuming perfect channel state information (CSI), we show that the source and the relay should map their signals to the dominant right singular vectors of the source-relay and relay-destination channels. For the limited feedback scenario, we prove the appropriateness of Grassmannian codebooks as the source and relay beamforming codebooks based on the distributions of the optimal source and relay beamforming vectors. In the second part of the paper, the direct link is considered in the problem model. Assuming perfect CSI, we derive the optimization problem that identifies the optimal source beamforming vector and show that the solution to this problem is uniformly distributed on the unit sphere for independent and identically distributed (i.i.d) Rayleigh channels. For the limited feedback scenario, we justify the appropriateness of Grassmannian codebooks for quantizing the optimal source beamforming vector based on its distribution. Finally, a modified quantization scheme is presented, which introduces a negligible penalty in the system performance but significantly reduces the required number of feedback bits.  相似文献   

20.
吴敏  裘正定 《信号处理》2010,26(10):1504-1509
本文针对有限反馈MIMO-OFDM波束形成系统,研究了基于簇的有限反馈方法。利用簇内相邻子载波信道的频率相干性,提出了一种低复杂度的信道均值分簇法,该方法以平均信道响应在给定码本中选择最佳簇波束形成向量。此外,利用簇波束形成向量之间的剩余相关性,还提出了递归反馈和基于格的反馈两种反馈速率降低方法,即将前一簇码字的邻域内码字作为当前簇的新码本,从而大幅度降低反馈比特数。仿真结果表明信道均值分簇法能以较低的计算复杂度获得较佳的BER性能,反馈降低方法相对传统分簇方法能进一步降低反馈速率,递归反馈方法有一定性能损失,而基于格的反馈方法性能损失可忽略不计。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号