首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A rate equation model preserving charge neutrality for quantum-dot semiconductor optical amplifiers (QD-SOAs) is established to investigate the nonlinear gain dynamics in the saturation regime. The static gain of QD-SOA is calculated assuming overall charge neutrality and compared with that without overall charge neutrality. Optical modulation response and nonlinear phase fluctuation through saturated QD-SOAs are calculated numerically based on a small-signal analysis. The gain dynamics of QD-SOAs are strongly dependent on the current injection level. The carrier reservoir in the wetting layer and continuum state is necessary for QD-SOAs to operate with high gain, high saturation power, and ultrafast gain recovery.  相似文献   

2.
We report time-resolved measurements of the linewidth enhancement factors (-factors) , and , associated with the adiabatic carrier recovery, carrier heating, and two-photon absorption dynamical processes, respectively, in semiconductor optical amplifiers (SOAs) with different degrees of dimensionality-one InAs/InGaAsP/InP quantum dot (0-D), one InAs/InAlGaAs/InP quantum dash (1-D), and a matching InGaAsP/InGaAsP/InP quantum well (2-D)-all operating near 1.55- wavelengths. We find the lowest values in the QD SOA, 2-10, compared to 8-16 in the QW, and values of and that are also lower than in the QW. In the QD SOA, the -factors exhibit little wavelength dependence over the gain bandwidth, promising for wide-bandwidth all-optical applications. We also find significant differences in the -factors of lasers with the same structure, due to the differences between gain changes that are induced optically or through the electrical bias. For the lasers we find the QW structure instead has the lower -factor, having implications for directly modulated laser applications.  相似文献   

3.
Ultrafast gain dynamics in quantum-dot (QD) optical amplifiers has been studied. It was found that there are at least three nonlinear processes, which are attributed to carrier relaxation to the ground states, phonon scattering, and carrier capture from the wetting layers into the QDs. The relevant time constants were evaluated to be ~90 fs, ~260 fs, and ~3 ps, respectively, under a 50-mA bias condition. The dephasing time was evaluated to be ~85 fs. The third-order optical susceptibility (χ(3)) has been evaluated by means of both nonlinear transmission and four-wave mixing experiments. The results show that the nonlinearity expressed by χ(3)/g0 is quite similar to that of bulk and quantum wells, which can be explained by similar relaxation times. Applications to optical communication devices are also discussed  相似文献   

4.
The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 mm at the bias current of 500 mA. The influences of the electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor linear optical amplifiers with gain clamping by vertical laser fields.  相似文献   

5.
Detailed theoretical analysis of the gain characteristics of quantum-dot semiconductor optical amplifiers (QD-SOA) is presented. An analytical expression for the optical gain is derived from the quantum dot and wetting layer rate equations. Due to the better confinement of carriers in the quantum dots, our calculation shows that large unsaturated optical gain can be obtained at low operating current. Also, we found that the output saturation intensity of QD-SOA is higher than the output saturation intensity of bulk-SOA. This fact lends itself to the design of efficient low-power SOAs.  相似文献   

6.
Measurements of ultrafast gain recovery in self-assembled InAs quantum-dot (QD) amplifiers are explained by a comprehensive numerical model. The QD excited state carriers are found to act as a reservoir for the optically active ground state carriers resulting in an ultrafast gain recovery as long as the excited state is well populated. However, when pulses are injected into the device at high-repetition frequencies, the response of a QD amplifier is found to be limited by the wetting-layer dynamics  相似文献   

7.
Based on extensive numerical calculations, quantum-dot (QD) amplifiers are predicted to offer higher output power and lower noise figure compared to bulk as well as quantum well amplifiers. The underlying physical mechanisms are analyzed in detail, leading to the identification of a few key requirements that QD amplifiers should meet in order to achieve such superior linear characteristics. The existence of a highly inverted wetting layer or barrier region, acting as a carrier reservoir, is central to this performance enhancement. It is shown that amplified spontaneous emission acts to decrease the inversion of the wetting layer states, thus helping to quench the gain of these states, which might otherwise dominate.  相似文献   

8.
The effect of p-type doping of the active region of multiple quantum-well (MQW) semiconductor optical amplifiers (SOAs) has been studied. Spectrogram measurements of the dynamics of the SOAs reveal that using p-doped barriers for the MQWs has significantly reduced both gain and phase recovery times. 1/e phase recovery times as short as 11 ps were demonstrated using this approach  相似文献   

9.
半导体光放大器的超快动态增益特性   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种包括载流子密度脉动(CDP)、载流子加热(CH)和光谱烧孔(SHB)效应在内的半导体光放大器(SOA)的时域动态模型。利用该模型分析了半导体光放大器中的增益饱和、超快增益动态以及光脉冲在增益饱和半导体光放大器中的波形畸变,其中重点考虑了超短脉冲的情况。模拟计算表明,对于10ps量级以下的短脉冲,分析半导体光放大器的动态增益特性时,不能忽略载流子加热和光谱烧孔等带内超快非线性效应的影响。  相似文献   

10.
In recent years, quantum dots have been successfully grown by self-assembling processes. For optoelectronic device applications, the quantum-dot structures have advantages such as reduced phonon scattering, longer carrier lifetime, and lower detector noise due to low-dimensional confinement effect. Comparing to traditional optoelectronic III-V and other materials, self-assembled Ge quantum dots grown on Si substrates have a potential to be monolithically integrated with advanced Si-based technology. In this paper, we describe the growth of self-assembled, guided Ge quantum dots, and Ge quantum-dot superlattices on Si. For dot growth, issues such as growth conditions and their effects on the dot morphology are reviewed. Then vertical correlation and dot morphology evolution are addressed in relation to the critical thickness of Ge quantum-dot superlattices. In addition, we also discuss the quantum-dot p-i-p photodetectors (QDIPs) and n-i-n photodetectors for mid-infrared applications, and the quantum-dot p-i-n photodetectors for 1.3-1.55 mum for communications applications. The wavelength of SiGe p-i-p QDIP can be tuned by the size as grown by various patterning methods. Photoresponse is demonstrated for an n-i-n structure in both the mid-infrared and far-infrared wavelength ranges. The p-i-n diodes exhibit low dark current and high quantum efficiency. The characteristics of fabricated light-emitting diode (LED) devices are also discussed, and room-temperature electroluminescence is observed for Ge quantum-dot LED. The results indicate that Ge dot materials are potentially applicable for mid-infrared (8-12 mum) detectors as well as fiber-optic (1.3-1.55 mum) communications.  相似文献   

11.
An experiment is described to study the carrier dynamics in an InGaAs quantum-dot-wetting-layer system emitting in the 1-/spl mu/m band at carrier densities typical of laser-diode operating conditions. The temporal evolution of the differential luminescence spectrum generated by the dots when an ultrafast optical pulse is used to perturb the steady-state carrier population of the surrounding wetting layer is measured. This provides information about the dynamic interaction of wetting-layer and quantum-dot populations. Study of the differential luminescence signal shows a marked bottleneck in the transfer of charge carriers into the quantum dots from the two-dimensional layers that surround them when the equilibrium occupancy of the dot states is high. Recovery of the system back to steady state then takes place over a time interval in excess of 600 ps. This situation arises because the dc electrical injection produces a high carrier density in the dot ensemble, and thus a high proportion of the additional photogenerated carriers remain in the wetting layer as the system thermalises. This reservoir of carriers then feeds into the dots as states are emptied by recombination events.  相似文献   

12.
A numerical model for the investigation of the ultrafast gain properties in asymmetrical multiple quantum-well semiconductor optical amplifiers has been developed considering propagation of ultrashort optical pulses with different wavelengths. The dynamics of the number of carriers and carrier temperature are investigated for each quantum well. The results agree with the experimental results of pump probe measurements with different wavelengths. It is shown that gain recovery is slower for higher energy wells for pump signals of all wavelengths.  相似文献   

13.
We present a detailed analytical model describing the noise properties of quantum-dot (QD) optical amplifiers operating in the linear and saturated regimes. We describe the dependence of the optical noise on the main physical parameters characterizing the QD gain medium as well as on operating conditions. The optical noise at the amplifier output shows a broad-band spectrum with an incoherent spectral hole due to the gain inhomogeneity. A coherent spectral dip stemming from noise-signal nonlinear interactions is superimposed on that broad-band spectrum. The broad-band incoherent component is also calculated using an approximate model which makes use of an equivalent inhomogeneous population inversion factor. The validity of the approximation is examined in detail. We also calculate the electrical relative intensity noise and observe a spectral hole corresponding to the spectral shape of the optical noise. The most important characteristics of the optical and electrical noise spectra are determined by the degree of inhomogeneous broadening and by the fast carrier dynamics of QD amplifiers. The fast dynamics causes a very wide noise spectral hole which has important potential consequences for detection of fast data and for all optical signal processing.  相似文献   

14.
A theoretical calculation is presented for the effect of homogeneous broadening of optical gain on lasing spectra of quantum-dot lasers. Based on a coupled set of rate equations considering both the size distribution of quantum dots and a series of longitudinal cavity modes, we show that dots with different energies start lasing independently due to their spatial localization when the gain spectrum is a delta-like function, and that the dot ensemble contributes to a narrow-line lasing collectively under large homogeneous broadening. The result explains quite excellently the experimental lasing spectra found in self-assembled InGaAs-GaAs quantum-dot lasers  相似文献   

15.
We analyze the complex turn-on behavior of semiconductor quantum-dot (QD) lasers in terms of a nonlinear rate equation model for the electron and hole densities in the QDs and the wetting layer, and the photons. A basic ingredient of the model is the nonlinearity of the microscopic carrier–carrier scattering rates. With the framework of detailed balance, we analytically relate the microscopic in- and out-scattering rates. We gain insight into the anomalous nonlinear dynamics of QD lasers by a detailed analysis of various sections of the 5-D phase space, accounting for density-dependent carrier scattering times. We show that the strongly damped relaxation oscillations are characterized by a desynchronization of electron and hole dynamics in the dots. Analytic approximations for the steady-state characteristics are also derived.   相似文献   

16.
We present theoretical and experimental results on the propagation of ultrashort pulses in quantum-dot (QD) laser amplifiers. The propagation time of the light pulses is controlled by the pulse itself (self-induced speed control) or by injection of a second pump pulse (external speed control). Our simulations on the basis of spatially and temporally resolved QD Maxwell–Bloch equations reveal that the excitation and relaxation dynamics induced by the propagating pulse or a pump pulse within the active charge carrier system leads to a complex gain and index dynamics that may either speed up or slow down the propagating light pulse. The physical effects allowing for the dynamic speed control could be ascribed to complex (coherent and incoherent) level dynamics leading to dynamic gain saturation and index dispersion. The dependence of the propagation time on injection current density and pulse energy is discussed. The numerical results of pulse reshaping and propagation times in the gain and absorptions regime are compared to experimental results.  相似文献   

17.
Emission dynamics of InGaAs-InGaAsP dot and wire DFB lasers were systematically investigated and compared with quantum-well lasers. Accordingly, the effective carrier capture times, which limit the maximum modulation bandwidth of low-dimensional semiconductor lasers, were determined and compared for these lasers. A quite large effective capture time of about 350 ps was found for the dot laser in contrast to about 56 ps for the quantum-well laser. This is attributed to a dramatically reduced volume of active region which induces a large scaled-up quantum capture time in the dot lasers. The systematic comparison of the quantum-well, -wire and -dot lasers reveal the dominant limitation of geometry effect on the high-speed modulation of quantum-wire and -dot lasers except when the packing density of the dots or wires is increased.  相似文献   

18.
A number of nano-engineering methods are proposed and tested to improve optical properties of a laser gain medium using the self-assembled InAs quantum dot (QD) ensemble. The laser characteristics of concern include higher gain, larger modulation bandwidth, higher efficiency at elevated temperatures, higher thermal stability, and enhanced reliability. The focus of this paper is on the management of QD properties through design and molecular beam epitaxial growth and modification of QD heterostructures. This includes digital alloys as high-quality wide-bandgap barrier; under- and overlayers with various compositions to control the dynamics of QD formation and evolution on the surface; shape engineering of QDs to improve electron-hole overlap and reduce inhomogeneous broadening; band engineering of QD heterostructures to enhance the carrier localization by reduction of thermal escape from dots; as well as tunnel injection from quantum wells (QWs) to accelerate carrier transfer to the lasing state. Beneficial properties of the developed QD media are demonstrated at room temperature in laser diodes with unsurpassed thermal stability with a characteristic temperature of 380 K, high waveguide modal gain >50 cm−1, unsurpassed defect tolerance over two orders of magnitude higher than that of QWs typically used in lasers, and efficient emission from a two-dimensional (2-D) photonic crystal nanocavity.  相似文献   

19.
An investigation of the recovery dynamics of semiconductor optical amplifiers (SOAs) explains why the ultrafast component of the gain recovery is largely absent in the phase response. The time-resolved gain and phase dynamics of a bulk GaInAs SOA are measured using a pump-probe technique and differences between the gain and phase recoveries are highlighted and explained using Kramers-Kronig analysis. These have important implications for optical signal processing.  相似文献   

20.
Amplified spontaneous emission measurements are investigated below threshold in InAs quantum-dot lasers emitting at 1.22 μm. The dot layer of the laser was grown in a strained quantum well (QW) on a GaAs substrate. Ground state gain is determined from cavity mode Fabry-Perot modulation. As the injection current increases, the gain rises super-linearly while changes in the index of refraction decrease. Below the onset of gain saturation, the linewidth enhancement factor is as small as 0.1, which is significantly lower than that reported for QW lasers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号