首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, dynamic crack growth in an elastic-plastic material is analysed under mode I, plane strain, small-scale yielding conditions using a finite element procedure. The material is assumed to obey J2 incremental theory of plasticity with isotropic strain hardening which is of the power-law type under uniaxial tension. The influence of material inertia and strain hardening on the stress and deformation fields near the crack tip is investigated. The results demonstrate that strain hardening tends to oppose the role of inertia in decreasing plastic strains and stresses near the crack tip. The length scale near the crack tip over which inertia effects are dominant also diminishes with increase in strain hardening. A ductile crack growth criterion based on the attainment of a critical crack tip opening displacement is used to obtain the dependence of the theoretical dynamic fracture toughness on crack speed. It is found that the resistance offered by the elastic-plastic material to high speed crack propagation may be considerably reduced when it possesses some strain hardening.  相似文献   

2.
Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic-plastic solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fundamental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory. Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the MSG theory and in the Fleck-Hutchinson strain gradient plasticity theory is obtained.  相似文献   

3.
In this paper dynamic crack growth in an elastic-plastic material is analyzed under mode I plane strain small-scale yielding conditions using a finite element procedure. The main objective of this paper is to investigate the influence of anisotropic strain hardening on the material resistance to rapid crack growth. To this end, materials that obey an incremental plasticity theory with linear isotropic or kinematic hardening are considered. A detailed study of the near-tip stress and deformation fields is conducted for various crack speeds. The results demonstrate that kinematic hardening does not oppose the role of inertia in decreasing the plastic strains and stresses near the crack tip with increase in crack speed to the same extent as isotropic strain hardening. A ductile crack growth criterion based on the attainment of a critical crack opening displacement at a small micro-structural distance behind the tip is used to obtain the dependence of the theoretical dynamic fracture toughness with crack speed. It is found that for any given level of strain hardening, the dynamic fracture toughness displays a much more steep increase with crack speed over the quasi-static toughness for the kinematic hardening material as compared to the isotropic hardening case.  相似文献   

4.
The fully plastic solutions of welded centre-cracked strip for plane stress problem were carefully investigated with the fully plastic finite element method. It was introduced for assessing the fracture mechanics parameters of weldment with mechanical heterogeneity that there existed an equivalent yielding stress and equivalent strain hardening exponent in the vicinity of crack tip keeping the assessment of fracture mechanics parameters of weldment in the same way as the homogeneous material. The equivalent yielding stress and equivalent strain hardening exponent of various matched weldment were computed and the effect of weld metal width were calculated and discussed on equivalent yielding stress and equivalent strain hardening exponent near crack tip. The engineering approach was given for estimating the fracture mechanics parameters of weldment with mechanical heterogeneity in elastic-plastic range.  相似文献   

5.
A method for the crack tip analysis of a tensile loaded crack (mode I) due to yielding of the material is developed. The stress/strain distribution within the plastic zone, as well as size of the plastic zone are presented. The development is based on the energy interpretation of the strain hardening exponent, and an analogy between mode III and mode I for the case of small scale yielding. Predictions of the proposed method are compared with the experimental results, and a fairly good agreement is observed. A number of proposed methods to estimate the plastic zone size for ductile materials are also discussed.  相似文献   

6.
In order to improve the damage tolerance of composites and the performance of adhesives, one of the methods being considered is toughened or modified epoxy resins. The modifiers which are commonly used are CTBN rubber and inorganic fillers. A major toughening mechanism causing the increased toughness is the shear deformation process occurring near the crack tip. The effect of such a deformation process is to blunt the crack tip and increase the size of the plastic zone. Several models are available to predict the toughness on the basis of plastic zone size, crack tip opening displacement or crack tip radius, but these are only applicable to Mode I crack extension. Also, most of these approaches use only one stress component which is normal to the crack plane to predict the fracture toughness. The present paper reviews the existing models and suggests a criterion based on the phenomenological approach to failure in order to study the yielding and fracture toughness behavior of both unmodified and modified epoxies. The proposed yield and fracture criteria give predictions in good agreement with experimental results.  相似文献   

7.
The stress fields near the tip of a matrix crack terminating at and perpendicular to a planar interface under symmetric in-plane loading in plane strain are investigated. The bimaterial interface is formed by a linearly elastic material and an elastic power-law creeping material in which the crack is located. Using generalized expansions at the crack tip in each region and matching the stresses and displacements across the interface in an asymptotic sense, a series asymptotic solution is constructed for the stresses and strain rates near the crack tip. It is found that the stress singularities, to the leading order, are the same in each material; the stress exponent is real. The oscillatory higher-order terms exist in both regions and stress higher-order term with the order of O(r°) appears in the elastic material. The stress exponents and the angular distributions for singular terms and higher order terms are obtained for different creep exponents and material properties in each region. A full agreement between asymptotic solutions and the full-field finite element results for a set of test examples with different times has been obtained.  相似文献   

8.
A near-tip asymptotic analysis is given for the stress and deformation field near the tip of crack propagating dynamically under anti-plane shear in an ideally plastic single crystal. A paricular class of orientations of the crack relative to the crystals is considered so that the yield is so simple diamond shape (relative to directions along perpendicular to the crack) in the plane of the anti-plane shear stresses. The near-tip solution is shown to consists of sectors which carry constant stresses, at yield levels, corresponding to adjacent vertices on the diamond-shaped yield locus, and which are joined along an elastic-plastic shock discontinuity. All plastic flow in the near-tip region occurs in the shock. Plastic strains and particle velocity are finite at the crack tip. The plastic strain is proportional to the elastic strain at onset of yielding and is inversely proportional to the elastic Mach number associated with the speed of crack growth.  相似文献   

9.
Elastic-plastic finite element simulations of growing fatigue cracks in both plane stress and plane strain are used as an aid to visualization and analysis of the crack closure phenomenon. Residual stress and strain fields near the crack tip are depicted by both color fringe plots and x-y graphs. Development of the residual plastic stretch in the wake of a growing plane stress fatigue crack is shown to be associated with the transfer of material from the thickness direction to the axial direction. Finite element analyses indicate that crack closure does occur under pure plane strain conditions. The development of the residual plastic stretch in plane strain is shown to be associated with the transfer of material from the in-plane transverse direction to the axial direction. This in-plane contraction also leads to the generation of complex residual stress fields. The total length of closed crack at minimum load in plane strain is shown to be a small fraction of the total crack length, especially for positive stress ratios. This suggests that experimental measurement of plane strain closure would be extremely difficult, and may explain why some investigators have concluded that closure does not occur in plane strain.  相似文献   

10.
11.
In the present study, mode I crack subjected to cyclic loading has been investigated for plastically compressible hardening and hardening–softening–hardening solids using the crack tip blunting model where we assume that the crack tip blunts during the maximum load and re-sharpening of the crack tip takes place under minimum load. Plane strain and small scale yielding conditions have been assumed for analysis. The influence of cyclic stress intensity factor range (\(\Delta \hbox {K})\), load ratio (R), number of cycles (N), plastic compressibility (\({\upalpha })\) and material softening on near tip deformation, stress–strain fields were studied. The present numerical calculations show that the crack tip opening displacement (CTOD), convergence of the cyclic trajectories of CTOD to stable self-similar loops, plastic crack growth, plastic zone shape and size, contours of accumulated plastic strain and hydrostatic stress distribution near the crack tip depend significantly on \(\Delta \hbox {K}\), R, N, \({\upalpha }\) and material softening. For both hardening and hardening–softening–hardening materials, yielding occurs during both loading and unloading phases, and resharpening of the crack tip during the unloading phase of the loading cycle is very significant. The similarities are revealed between computed near tip stress–strain variables and the experimental trends of the fatigue crack growth rate. There was no crack closure during unloading for any of the load cycles considered in the present study.  相似文献   

12.
An experimental stress analysis technique for the determination of stress intensity acting at a crack tip has been developed and applied to several problems. The approach uses precise, continuous mechanical measurement of the small changes in separation of the crack faces near the crack tip during loading. From these results and the opening mode linear elastic displacement field equation the stress intensities are calculated.

The technique has been used to measure the change in stress intensity acting on a crack progressing along a line of rivet holes and to determine the interaction effects in a parallel crack array. Agreement with the available theoretical solutions is good.

The technique has also been used to explore the onset of elastic-plastic behavior at the crack tip. It has been shown that the deviation from elastic behaviour can be analyzed in terms of equivalent elastic response to determine the crack tip dislocation as a function of load. The results are in good agreement with the relatively crude theoretical models now available.  相似文献   


13.
A theoretical analysis shows that if a plane strain crack becomes unstable under small-scale yielding conditions after only a very small increment of stable crack extension, there being no change in fracture mode, then the difference between the crack tip stress intensity factors for the onset of crack extension and instability is also small. Implications of this prediction are discussed in relation to the fracture toughness testing of materials.  相似文献   

14.
In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al-Mg alloy, viz., continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip.  相似文献   

15.
The blunting of the tip of a crack in a ductile material is analysed under the conditions of plane strain, small-scale yielding, and mixed mode loading of Modes I and II. The material is assumed to be an elastic-perfectly plastic solid with Poisson's ratio being 1/2. The stress and strain fields for a sharp crack under mixed mode loading are first determined by means of elastic-plastic finite element analysis. It is shown that only one elastic sector exists around the crack tip, in contrast with the possibility of existence of two elastic sectors as discussed by Gao. The results obtained for a sharp crack are used as the boundary conditions for the subsequent numerical analysis of crack tip blunting under mixed mode loading, based on slip line theory. The characteristic shapes of the blunted crack tip are obtained for a wide range of Mode I and Mode II combinations, and found to resemble the tip of Japanese sword. Also the stress field around the blunted crack tip is determined.  相似文献   

16.
For a crack in a homogeneous material the effect of plastic anisotropy on crack-tip blunting and on the near-tip stress and strain fields is analyzed numerically. The full finite strain analyses are carried out for plane strain under small scale yielding conditions, with purely symmetric mode I loading remote from the crack-tip. In cases where the principal axes of the anisotropy are inclined to the plane of the crack it is found that the plastic zones as well as the stress and strain fields just around the blunted tip of the crack become non-symmetric. In these cases the peak strain on the blunted tip occurs off the center line of the crack, thus indicating that the crack may want to grow in a different direction. When the anisotropic axes are parallel to the crack symmetry is retained, but the plastic zones and the near-tip fields still differ from those predicted by standard isotropic plasticity.  相似文献   

17.
In this work, steady, dynamic crack growth under plane strain, small-scale yielding conditions along a ductile-brittle interface is analysed using a finite element procedure. The ductile solid is taken to obey the J 2 flow theory of plasticity with linear isotropic strain hardening, while the substrate is assumed to exhibit linear elastic behaviour. The objectives of this work are to establish the validity of an asymptotic solution for this problem which has been derived recently [12], and to examine the effect of changing the remote (elastic) mode-mixity on the near-tip fields. Also, the influence of crack speed on the stress fields and crack opening profiles near the propagating interface crack tip is assessed for various bi-material combinations. Finally, theoretical predictions are made for the variation of the dynamic fracture toughness with crack speed for crack growth under a predominantly tensile mode along ductile-brittle interfaces. Attention is focused on the effect of mismatch in stiffness and density of the constituent phases on the above aspects.  相似文献   

18.
含缺口受拉平板塑性应力场的有限元分析   总被引:2,自引:0,他引:2  
含尖缺口受拉平板三维应力场是断裂分析研究中常遇到的问题,进入塑性状态以后,缺口尖端的应力状态和分布与弹性条件下有很大的不同。通过有限元的方法对含缺口受拉平板的塑性应力场进行了分析,并进一步研究了厚度和缺口半径因素对缺口尖端应力场的影响。分析结果表明,缺口半径减小提高了平面内应力σx和σy,也提高厚度方向应力σz和平面应变系数,平面应变系数在塑性条件下趋于0.5;厚度对平面内应力σx和σy影响很小,但提高厚度方向应力σz和平面应变系数,平面应变系数在载荷较小时趋于材料泊松比μ,在载荷较大时趋于0.5。  相似文献   

19.
For 10 mm thick smooth-sided compact tension specimens made of a pressure vessel steel 20MnMoNi55, the interrelations between the cohesive zone parameters (the cohesive strength, Tmax, and the separation energy, Γ) and the crack tip triaxiality are investigated. The slant shear-lip fracture near the side-surfaces is modeled as a normal fracture along the symmetry plane of the specimen. The cohesive zone parameters are determined by fitting the simulated crack extensions to the experimental data of a multi-specimen test. It is found that for constant cohesive zone parameters, the simulated crack extension curves show a strong tunneling effect. For a good fit between simulated and experimental crack growth, both the cohesive strength and the separation energy near the side-surface should be considerably lower than near the midsection. When the same cohesive zone parameters are applied to the 3D model and a plane strain model, the stress triaxiality in the midsection of the 3D model is much lower, the von-Mises equivalent stress is distinctly higher, and the crack growth rate is significantly lower than in the plane strain model. Therefore, the specimen must be considered as a thin specimen. The stress triaxiality varies dramatically during the initial stages of crack growth, but varies only smoothly during the subsequent stable crack growth. In the midsection region, the decrease of the cohesive strength results in a decrease of the stress triaxiality, while the decrease of the separation energy results in an increase of the triaxiality.  相似文献   

20.
A modification to the standard caustic equations was made to include the effect of a mixed plane stress-plane strain state across the specimen thickness near the crack tip. By assuming the thickness of the plane stress surface layer to be of the size of the plastic zone along the crack axis, a K ˜ D5/6 dependence for the stress intensity factor K vs the caustic diameter D was obtained. This dependence contrasts the classical K ˜ D5/2 relationship based on plane stress considerations, but it is in good agreement with our experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号