首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文通过大量实验研究了不同种类的石膏对高掺量矿渣水泥力学性能的影响,发现用硬石膏或煅烧硬石膏(指天然硬石膏经800℃煅烧以后的无水石膏)代替二水石膏能更好地激发矿渣的活性,提高矿渣水泥的强度。用X射线衍射、扫描电子显微镜和热分析等现代测试手段研究和分析了硬石膏和煅烧硬石膏增强矿渣水泥的机理。指出硬石膏和煅烧硬石膏与矿渣的溶散特点相匹配以致在水化过程中形成结晶度高的钙矾石及类托贝莫来石为主体的显微结构是硬石膏和煅烧硬石膏增强矿渣水泥活性、提高其强度的根本原因。  相似文献   

2.
研究了高铝水泥对磷石膏-矿渣-钢渣免煅烧水泥体系的强度、凝结时间及标准稠度等性能的影响规律,并通过XRD和SEM分析探讨了该水泥体系的水化机理,分析得出该水泥体系的水化产物主要是钙矾石和C-S-H凝胶。结果表明,高铝水泥的加入可以有效提高磷石膏-矿渣-钢渣免煅烧水泥体系的早期强度并缩短凝结时间,使水化产物钙矾石生成量明显增加,从而有效提高该胶凝材料的水化性能;当掺入6%的高铝水泥时,可以制备出3d抗压强度为4.5MPa,28d抗压强度达35MPa左右的高铝-磷石膏基水硬性胶凝材料。  相似文献   

3.
应城石膏尾矿在水泥生产中应用的可行性研究   总被引:3,自引:0,他引:3  
通过对应城石膏尾矿的矿物分析和组份分析,充分论证了用应城石膏尾矿,经过适当处理后,可以在水泥生产中作为水泥缓凝剂作用,并在此基础与二水石膏进行了全面的对比试验。结果表明经550 ̄700℃煅烧后的石膏尾矿,完全可以作为水泥生产中的缓凝剂使用,且尾矿中的粘土矿物组份煅烧后具有很好的火山灰活性,在水泥中作为混合材使用。  相似文献   

4.
在分析,测定了海盐石膏的化学组成和矿物组成及热特性的基础上,研究了不同煅烧条件下制备的改性海盐石膏对硅酸盐泥主要性能的影响,结果表明:改性海盐石膏既明显地提高水泥的早期强度和略提高水泥的后期强度,还能十分明显地提高高掺量混合材水泥的强度,且水泥的凝结时间正常,制备的最佳工艺参数是:煅烧温度800度为左右,煅烧时间为0.5-1h。  相似文献   

5.
研究石膏-熟料-矿粉三方面体系中,石膏对矿渣路面基层水泥的影响,从水泥的凝结时间、力学性能以及微膨胀性等方面进行对比。结果表明:随着硬石膏掺量增加,水泥的凝结时间呈现先延长后缩短的趋势,水泥强度也呈先增加后急剧降低的趋势,并且在水泥中硬石膏掺量为9%的情况下,水泥强度达到32.5水泥等级,此时水泥的凝结时间及微膨胀性能也能满足施工要求。对比其他种类石膏的使用性能发现,脱硫石膏也具有广阔的使用前景。  相似文献   

6.
本文对活化煤矸石及矿渣作为复合硅酸盐水泥混合材进行试验研究。通过正交试验寻找煤矸石热活化的最优条件,优化设计活化煤矸石-矿渣作混合材制备复合硅酸盐水泥,探索不同配比混合材、石膏对复合硅酸盐水泥性能影响。结果表明:煤矸石最佳热活化条件为煅烧温度700℃、保温时间1 h、物料粒度0.08 mm;以活化煤矸石为主的混合材掺量为40%,能够制备出强度等级达到32.5的复合硅酸盐水泥。  相似文献   

7.
研究了蒸养条件下二水石膏和硬石膏影响硅酸盐水泥制品强度的机理。试验发现,在蒸养条件(65℃×4h)下,随着SO3掺量提高,含二水石膏水泥强度逐渐由高于变化到低于含硬石膏水泥强度。研究表明,含SO35%硬石膏水泥水化速率高于含二水石膏水泥,且微观结构更为均匀。通过对水泥石孔隙液相分析推测,两种石膏溶解度大小顺序变化是产生上述结果的根本原因  相似文献   

8.
目的 为促进工业固废钛石膏资源再利用,了解硬石膏对硫铝酸盐水泥熟料性能的影响,方法 以钛石膏为原料,采用加压水热法和酸浸法合成Ⅱ型硬石膏,研究不同方法合成的硬石膏对硫铝酸盐水泥熟料性能的影响。结果 加压水热法和酸浸法合成的硬石膏因合成方法不同,对粒径、形貌、孔隙和表面积等微观性能影响也不同;在硫铝酸盐水泥熟料中添加不同方法合成的硬石膏或天然硬石膏,且不同种类的硬石膏掺量为15%时,硫铝酸盐水泥熟料的抗压强度均达到最大值;随着养护时间延长,硫铝酸盐水泥熟料的抗压强度均明显提高;与掺入天然硬石膏相比,掺入酸浸法合成硬石膏的抗压强度较低,但在硬石膏相同掺量和相同水化时间下,掺入加压水热法合成的硬石膏的硫铝酸盐水泥熟料的抗压强度均高于掺入其他两种硬石膏的。结论 加压水热法合成硬石膏在水泥熟料中应用前景广阔,是钛石膏再利用的重要途径。  相似文献   

9.
研究了矿物掺合料偏高岭土、硅灰、硫铝酸盐水泥和外加剂水玻璃对过硫磷石膏矿渣水泥凝结速率、早期强度等早期性能的影响规律,并通过XRD、SEM等对过硫磷石膏矿渣水泥的水化及结构发展进行了研究。结果表明,在过硫磷石膏矿渣水泥中掺加水玻璃和偏高岭土,能显著提高该水泥的凝结速率和早期强度,3d、7d、28d抗压强度分别达到17MPa、32MPa、46MPa。  相似文献   

10.
石膏及其种类对水泥水化过程的影响   总被引:2,自引:0,他引:2  
综述了石膏对波特兰水泥水化过程影响的研究进展,指出了只有系统地研究不同形态的石膏与水泥中各相的相互作用。才有可能全面的揭示石膏在水泥中的作用。不同种类的石膏对水泥水化过程的影响程度不同;高温煅烧石膏能明显提高波特兰水泥的早期强度。  相似文献   

11.
无熟料高炉矿渣水泥的物料配比与性能的关系   总被引:1,自引:0,他引:1  
研究了Ca(OH)2、硬石膏及少量可溶性钙盐(甲酸钙、乙酸钙等)复合对高炉矿渣活性的激发作用及物料配比与性能的关系。结果表明:Ca(OH)2与硬石膏复合对矿渣活性有一定的激发效果,可溶性钙盐的加入降低了水泥的pH值,进一步激发了矿渣的活性,乙酸钙(Ca(CH2COOH)2)的激发效果好于甲酸钙(Ca(COOH)2);在矿渣掺量为80%,Ca(OH)2掺量15%,硬石膏掺量5%,外加1.0%Ca(CH2COOH)2生产出的无熟料水泥28d抗压强度达54.6MPa;Ca(COOH)2与硬石膏促进高炉矿渣水化的主要水化产物为钙矾石和C—S—H凝胶。  相似文献   

12.
利用DTA、XRD、IR、化学结合水和Ca(OH)2生成量测定等方法,研究了煅烧石膏、二水石膏对硅酸盐水泥早期水化过程的影响。结果表明:在水化龄期相同时,掺煅烧石膏水泥浆体中水化产物同掺二水石膏相比,Ca(OH)2生成量大;在一天前无AFt生成;结合水量在一天前前者高于后者,而一天后则相反。指出了煅烧石膏提高水泥强度的机理在于:由于煅烧石膏的溶解速度较低,在水泥水化初期(1d前),存在于水泥中的铝酸盐相不能形成AFt,从而减缓了AFt对水泥水化的延缓作用,加速了整个熟料矿物相的水化,提高了水泥的强度。  相似文献   

13.
通过对水泥的物理性能实验和采用差热分析(DTA)、X-射线衍射(XRD)、扫镜电镜(SEM)现代测试方法对磷石煅烧前后的结构及水泥水化产物的变化分别进行测试分析,证明磷石膏经过高温煅烧后成为结构疏松的熟磷石膏,在外加组分的作用下与水泥组分的性大幅度提高,利用磷石谊制得的水泥具有熟料用量少、物理性能好特点。  相似文献   

14.
研究了二水石膏、600℃、800℃、1000℃煅烧石膏对C2S浆体强度的影响,结果表明:石膏的掺入,能提高C2S浆体的强度;煅烧石膏比二水石膏更能提高C2S浆体的强度。证明了石膏不仅对硅酸盐水泥中C3A的水化产生影响,同时亦对硅酸盐矿物的水化有促进作用。  相似文献   

15.
高温煅烧石膏提高水泥强度的影响因素   总被引:1,自引:0,他引:1  
本文通过对山西临昆石膏经高温煅烧后可以提高水泥强度的机理研究。结论主要是山西临昆石膏中杂异离子的存在以及经高温煅烧后石膏本身的某些物化性能的改变。  相似文献   

16.
碱矿渣水泥固化高放射性废液的研究   总被引:5,自引:0,他引:5  
水泥固化高放射性废液的机理有三个方面:机械固化、吸附固化和化学固化(固溶固化)。从这三个方面出发,通过对碱矿渣水泥固化高放废液的研究,并结合国内外水泥固化高放废液的研究现状,初步分析和阐述了碱矿渣水泥固化高放废液的理论依据,指出碱矿渣水泥比硅酸盐水泥更适用于高放废液的固化。  相似文献   

17.
粉煤灰矿渣复合水泥强度超叠效应的研究   总被引:4,自引:0,他引:4  
通过由粉煤灰、水淬粒化高炉矿渣、硅酸盐水泥熟料及适量石膏组成的复合水泥强度试验,系统地研究了其强度叠国效应,在大量试验的基础上,优化了混合材料琢比例,造反他较为适宜的激发剂,从理论上分析了复合水泥产生强度超叠效应的原因及不化作用机理。  相似文献   

18.
论碱矿渣水泥及混凝土的缓凝问题及缓凝方法   总被引:13,自引:1,他引:13       下载免费PDF全文
本文分析了缓凝问题对碱矿渣水泥及混凝土应用的影响;讨论了碱矿渣水泥的凝结特点及现有缓凝措施的适用性,认为捅用有效的缓凝剂才是解决该胶凝材料系统易于出现速凝现象的根本途径;有效缓凝剂作用机理及新型复合缓凝剂的研究仍是碱矿渣水泥及混凝土研究领域的重要课题。  相似文献   

19.
通过由粉煤灰、水淬粒化高炉矿渣、硅酸盐水泥熟料及适量石膏组成的复合水泥强度试验,系统地研究了其强度叠加效应.在大量试验的基础上,优化了混合材料掺量及比例,选择了较为适宜的激发剂.从理论上分析了复合水泥产生强度超叠效应的原因及早期水化作用机理  相似文献   

20.
无熟料高炉矿渣水泥的水化特性   总被引:2,自引:1,他引:1  
无熟料高炉矿渣水泥(简称NSC)的水化反应取决于高炉矿渣粉(简称GBFS)的碱度、化学成分、玻璃化率以及激发剂的种类和数量。本文以废石膏和废石灰作为激发剂对高炉矿渣粉的水化结构进行了XRD、DTA、SEM、pH分析,并提供了配制NSC的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号