首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 868 毫秒
1.
2.
Different capacity allocation regimes have a strong impact on the economics of offshore wind farms and on interconnectors in offshore grids. Integrating offshore generation in offshore grids is currently a subject of discussion for different regions, e.g. the North Sea. A novel question is how the interconnector capacity should be allocated for wind generation and for international power trading. The main difficulty arises from the stochastic nature of wind generation: in a case with radial connections to the national coast, the wind park owner has the possibility of aggregating the offshore wind park with onshore installations to reduce balancing demand. This is not necessarily the case if the interconnector capacity is sold through implicit or explicit auctions. Different design options are discussed and quantified for a number of examples based on Danish, Dutch, German and Norwegian power markets. It is concluded that treating offshore generation as a single price zone within the interconnector reduces the wind operator's ability to pool it with other generation. Furthermore, a single offshore price zone between two markets will always receive the lower spot market price of the neighbouring zones, although its generation flows only to the high‐price market. Granting the high‐price market income for wind generation as the opposite design option reduces congestion rents. Otherwise, compensation measures through support schemes or different balancing responsibilities may be discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
T. Y. Liu  P. J. Tavner  Y. Feng  Y. N. Qiu 《风能》2013,16(5):786-803
Rapid wind power development in China has attracted worldwide attention. The huge market potential and fast development of wind turbine manufacturing capacity are making China a world leader in wind power development. In 2010, with the newly installed wind power capacity and the cumulative installed capacity, China was ranked first in the world. In 2009, China also constructed and commissioned its first large offshore wind farm near Shanghai. Following earlier papers reviewing the state of China's onshore wind industry, this paper presents a broader perspective and up‐to‐date survey of China's offshore wind power development, making comparisons between the developments in the rest of the world and China, to draw out similarities and differences and lessons for the China offshore wind industry. The paper highlights six important aspects for China's offshore wind development: economics, location, Grid connection, technological development, environmental adaptation and national policies. The authors make recommendations for mitigating some outstanding issues in these six aspects for the future development of China's offshore wind resource. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
"渤海海上风力发电示范工程"于2007年初批准正式立项,建设国内第一台海上风力发电机组,容量为1.5MW。由于风能具有间歇性和随机性的特点,为了实现绥中36-1CEP平台孤立电网与风电机组互补发电,并且保证该电网的平稳运行,进行了海上平台孤立小电网的稳定性研究。海上石油平台电网允许的正常频率波动范围为±0.25Hz,频率偏差报警为±0.5Hz,电网频率将随着透平发电机组输出有功功率的变化而波动。当风力发电机组在额定输出有功功率跳闸退出电网时,对电网频率的影响最大;当风力发电机组在额定风速启动并网时,对电网频率的影响较大。在特定的风燃互补孤立小电网中,采用电网负荷频率调节方程,可以计算风力发电机组容量与电网总负荷之比和频率波动的关系。海上平台风燃互补发电孤立小电网稳定运行的条件为风力发电机组的容量与平台电网总容量的比值小于10%。在满足风力发电机组引起平台电网最大频率波动范围为±0.25Hz的条件下,额定有功功率为1.5MW的风力发电机组,可并入最低总有功功率为15MW的电网。将稳定性研究结论应用于渤海风力发电示范项目,保证了示范工程的顺利进行,实现了国内第一台海上风力发电机组与生产平台并网发电的稳定运行。  相似文献   

5.
A. Garcés  M. Molinas 《风能》2012,15(6):827-845
Optimization and reliability are two important aspects in design and operation of wind parks either for offshore as for onland emplacements. However, offshore locations demand conscientious effort in optimizing the size and the weight of each component in the energy conversion system because of the high investment and maintenance costs related with the supporting structures and transportation respectively. Achieving these two objectives requires the combination of different optimization stages, which consider a suitable design of the entire conversion system with innovative and more e?cient power electronic devices, optimized topology of the offshore grid and customized control strategies for optimizing the operation of the park. This paper presents an energy conversion concept for wind turbines on the basis of a reduced matrix converter (RMC) that will enable series direct current architecture in offshore wind parks thus preventing the need for offshore platforms. The RMC is built with bidirectional semiconductors that give reduced losses because of both superior topology and more e?cient semiconductors. The proposed conversion topology is tested in stationary state and transient operation. In addition to operational features of the concept, control and operation of a wind park with several turbines are presented. Dynamic operation of the turbine as well as the high‐voltage direct current transmission line effects are considered. Three types of models are therefore developed. First, an accurate and detailed model for analyzing one single turbine with the converter operated at high‐frequency switching is presented. This model considers a new modulation for the RMC. A second and simpli?ed model is used for small signal analysis. This model permits to simulate several series‐connected cluster during transient. Finally, an optimal direct current load ?ow model is used for evaluating stationary state operation. Results show the technical feasibility of the proposed concept and their advantages over conventional topologies. The paper also discusses the technological challenges that this type of offshore grid architecture will bring. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
We have conducted a feasibility study on the development of offshore wind farms around the Korean Peninsula as part of the national plan. This study deals with the selection of the optimal site for an offshore wind farm. We set rating indices in order to select an optimal site of the candidate coasts, which include the expected B/C (benefit to cost) ratio, the possible installation capacity of the wind farm, the convenience of grid connection, and so on, for each candidate site. The expected B/C ratio is described as the benefit from the annual energy production compared to the costs that correspond to the construction of the turbine foundation, and the grid connection between the offshore wind farm and the substation on land. It can be found from the evaluation that the construction costs associated with the substructure and grid connection are crucial in determining the location of the first offshore wind farm in Korea. Consequently, we could select a top site among the candidate sites to be implemented as the first national project of offshore wind farm development.  相似文献   

7.
The expected increase of wind power production in the North and Baltic Seas will substantially increase the variability of the generation portfolio in Northern Europe. Access to available resources of flexible power production will be necessary to support the power system against this variability. Since the Nordic hydro‐based power system can provide such resources, a stronger interconnection between continental Europe and the Nordic region seems to be beneficial. This paper assesses the challenges related to wind power production variability, especially offshore, in the North and Baltic Seas. Assessment on the transmission grid needed for both harvesting the available wind production located far away from load centres and to enable the optimal use of hydropower flexibility is studied in a long‐term cost‐benefit analysis. Special focus is devoted to the role of an offshore grid structure and the impact of onshore grid constraints. The analysis includes two interrelated simulation steps. The first step focuses on the strategic use of hydro energy in the day‐ahead market, where detailed modelling of water courses and hydro production in the Nordic region is considered. Then, in a second step, flow‐based simulations are conducted on a detailed grid model for the whole European system. The results show that long‐term strategies for the expansion of offshore and onshore grids must be defined in a coordinated way to ensure optimal developments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a framework to find optimal offshore grid expansions using a transportation model of the power grid. The method extends the standard mixed‐integer linear programming approach to the solution of the transmission expansion planning problem to account for fluctuations in wind power generation and load; this makes the method especially suited to identify optimal transnational offshore high‐voltage direct current grid structures for the integration of large amounts of offshore wind power. The applicability of the method is demonstrated by a case study of the North Sea region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
风电场并网时产生的电压波动和闪变、电压偏差以及谐波,直接影响电网运行的稳定性。本文以某风电场为例,探讨以上影响风电场电能质量的因素。通过对相关因素的阐述、计算及分析,结合国家标准规范,明确电场电能质量的分析评估方法。结果表明,风电并网前需进行电能质量评估,对相关参数进行详细计算,其结果必须满足国标要求,才可实现电网稳定运行。  相似文献   

10.
风电场的电能质量是风电场并入电网运行的关键指标。文章从风电场的电压谐波、三相电压不平衡度和频率偏差三个方面分析了风电场的电能质量,并引用广东惠来海湾石风电场的实测数据,说明风电场的电能质量能够满足公用电网电能质量的要求。  相似文献   

11.
The power system of Denmark is characterized by significant incorporation of wind power. Presently, more than 20% of the annual electricity consumption is covered by electricity‐producing wind turbines. The largest increase in grid‐incorporated wind power is expected to come from large (offshore) wind farms operating as large wind power plants with ride‐through solutions, connected to the high‐voltage transmission system and providing ancillary services to the system. In Denmark there are presently two offshore wind farms connected to the transmission system: Horns Rev A (160MW rated power in the western part of the country) and Nysted (165MW rated power at Rødsand in Eastern Denmark). The construction of two more offshore wind farms, totalling 400MW by the years 2008–2010, has been announced. This article presents the status, perspectives and technical challenges for wind power in the power system from the point of view of Energinet.dk, Transmission System Operator of Denmark. Copyright © 2006 John Wiley &Sons, Ltd  相似文献   

12.
Offshore wind power plants (WPPs) built near each other but far from shore usually connect to the main grid by a common high‐voltage DC (HVDC) transmission system. In the resulting decoupled offshore grid, the wind turbine converters and the high‐voltage DC voltage‐source converter share the ability to inject or absorb reactive power. The overall reactive power control dispatch influences the power flows in the grid and hence the associated power losses. This paper evaluates the respective power losses in HVDC‐connected WPP clusters when applying 5 different reactive power control strategies. The case study is made for a 1.2‐GW–rated cluster comprising 3 WPP and is implemented in a combined load flow and converter loss model. A large set of feasible operating points for the system is analyzed for each strategy. The results show that a selection of simulations with equal wind speeds is sufficient for the annual energy production comparison. It is found that the continuous operation of the WPPs with unity power factor has a superior performance with low communication requirements compared with the other conventional strategies. The optimization‐based strategy, which is developed in this article, allows a further reduction of losses mainly because of the higher offshore grid voltage level imposed by the high‐voltage DC voltage‐source converter. Reactive power control in HVDC‐connected WPP clusters change significantly the overall power losses of the system, which depend rather on the total sum of the injected active power than on the variance of wind speeds inside the cluster.  相似文献   

13.
France appears to have the second largest wind energy potential in Europe, after the United Kingdom. According to certain estimates the potential annual production is evaluated at 70 TWh on the land and more than 90 TWh for offshore sites located in an area along the coast, with a maximum width of 10 km and where the sea depth is less than 10 m. This potential production of more than 160 TWh represents approximately 33% of the present electricity generation in France. However, the wind energy potential that will actually be exploitable will be noticeably lower. This paper describes the EOLE 2005 Program, a French national program for the promotion of wind power, launched in February 1996. The targets and incentive measures for wind power development are discussed. The grid connection of wind farms and offshore wind energy are also discussed.  相似文献   

14.
Between 2006 and 2010 the installed capacity of wind power in China has doubled and by 2010 China's cumulative installed capacity of wind power ranked the first in the world, surpassing the United States. However, the rapid expansion of installed capacity has not been matched by grid connection, and this deficiency has aroused the concern of both policy makers and scholars. Unlike most of the current studies which focus on technical strategies in China's wind power industry, this paper analyzes the problem from a policy perspective. The paper analyzes the four challenges that large scale wind power integration in China faces: the uncoordinated development between wind power capacity and power grids; the lack of suitable technical codes for wind power integration; the unclear nature of the grid companies’ responsibility for grid connection; and the inadequate economic incentives for grid enterprises. To address these problems, the paper recommends that the government: formulates policies to better coordinate the development of wind power and the planning and construction of power grids; establishes grid codes that reflect in particular the requirements to be met by users of power transmission and distribution networks; and integrates administrative intervention and economic incentive policies to stimulate the grid enterprises’ enthusiasm to absorb wind power generation.  相似文献   

15.
[目的]当前海上风电已成为全球风电发展的研究热点。我国海上风电尚处于起步阶段,而当前的运营模式存在不利于海上风电大规模集中送出等缺点,无法适应新形势下的长远发展。另一方面,欧洲各国对海上风电的补贴政策与我国当前的发展思路有所冲突,可借鉴性不强,且欧洲模式本身仍存在弊端。因此亟需探索适合我国近海深水区海上风电发展的新模式。[方法]首先分析了欧洲各国海上风电发展现状,并对海上风电输电模式进行总结;其次给出了四种海上风电输电技术应用场景;最后对海上风电商业模式进行了可行性分析。[结果]结果表明:在拆分海上发、输电侧环节后,广东省预计“十四五”期间能够实现平价上网;相比于分散式开发,深水区海上风电统筹集约式开发从经济性及环境集约利用层面更具有优势。[结论]形成的研究结论可以为后续大规模海上风电集中送出项目的方案设计和建设模式提供技术支持,具有很好的示范应用前景。  相似文献   

16.
While experience gained through the offshore wind energy projects currently operating is valuable, a major uncertainty in estimating power production lies in the prediction of the dynamic links between the atmosphere and wind turbines in offshore regimes. The objective of the ENDOW project was to evaluate, enhance and interface wake and boundary layer models for utilization offshore. The project resulted in a significant advance in the state of the art in both wake and marine boundary layer models, leading to improved prediction of wind speed and turbulence profiles within large offshore wind farms. Use of new databases from existing offshore wind farms and detailed wake profiles collected using sodar provided a unique opportunity to undertake the first comprehensive evaluation of wake models in the offshore environment. The results of wake model performance in different wind speed, stability and roughness conditions relative to observations provided criteria for their improvement. Mesoscale model simulations were used to evaluate the impact of thermal flows, roughness and topography on offshore wind speeds. The model hierarchy developed under ENDOW forms the basis of design tools for use by wind energy developers and turbine manufacturers to optimize power output from offshore wind farms through minimized wake effects and optimal grid connections. The design tools are being built onto existing regional‐scale models and wind farm design software which was developed with EU funding and is in use currently by wind energy developers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The expansion of offshore wind energy as well as the increase in electricity trade between the North Sea countries leads to a growing need for additional transmission capacity. Due to the predominantly remote locations of offshore wind farms, the majority of future connections will be high-voltage direct current (HVDC) connections. In order to make the construction of offshore infrastructure more efficient, the North Sea states are currently discussing the development of a common offshore grid. Although this development still stands at the very beginning, we argue in this paper that some crucial elements should be standardized from the outset; the most important one being a common voltage level. Without such standardization, the development of a European offshore grid may be suboptimal, not cost-efficient and might even be prevented from coming into existence. We examine the technical and legal issues associated with introducing a common voltage level for the use of HVDC VSC technology, and discuss the optimal standard as well as the way in which this common standard can best be achieved.  相似文献   

18.
This paper presents an overview of the main issues associated with the economics of offshore wind. Investment in offshore wind systems has been growing rapidly throughout Europe, and the technology will be essential in meeting EU targets for renewable energy in 2020. Offshore wind suffers from high installation and connection costs, however, making government support essential. We review various support policies used in Europe, concluding that tender-based feed-in tariff schemes, as used in Denmark, may be best for providing adequate support while minimising developers’ rents. It may prove economic to build an international offshore grid connecting wind farms belonging to different countries that are sited close to each other.  相似文献   

19.
Vladislav Akhmatov 《风能》2009,12(7):692-711
This paper gives an overview of the state of the art and lists future challenges to reactive power and voltage control in the Danish transmission system in relation to large offshore windfarms. Today, the reliable and stable operation of the Danish transmission system is based on the voltage and frequency control carried out at central, conventional power plants. Moreover, the control of some larger decentralized combined heat and power units is activated for voltage control and system balancing, which is specific for the Danish system. In the years to come, according to the government's goal of increasing the share of renewable energy sources in the Danish power system, the share of large offshore windfarms in the Danish power generation mix will increase greatly, replacing central power plants, including their control characteristics during periods of strong winds. Large offshore windfarms must therefore provide the transmission system with the necessary voltage and frequency control, e.g. ancillary services, and ensure secure operation of the power system through their contribution to system service. Danish experience, based on the operation of a system with two large offshore windfarms and several smaller ones, has shown that the efficient use of windfarms' reactive power and voltage control for the on‐land transmission system might be limited by several factors. Among such limiting factors are the reactive power and current capability limits of the electronic power converters and switchable capacitor banks of the offshore wind turbines, which are smaller than those of central power plants measured per unit of the active power rating. Combine this with the use of AC cables, tens of kilometres long, to connect the large offshore windfarms to the on‐land transmission system, the reactive power range available to the transmission system gets poor. The Transmission System Operator should already take such limiting factors and alternative solutions for efficient reactive power and voltage control, such as incorporation of a reactive power compensation unit at the on‐land point of connection or evaluation of a Voltage Sourced Converter‐High Voltage Direct Current instead of an AC connection, into consideration during the planning phase for a windfarm connection. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
M. El‐Shimy 《风能》2014,17(2):279-295
The analysis of reactive power for offshore and onshore wind farms connected to the grid through high‐voltage alternating‐current transmission systems is considered in this paper. The considered wind farm is made up with doubly fed induction generators (DFIGs). Modeling and improved analysis of the effective reactive power capability of DFIGs are provided. Particularly, the optimal power‐tracking constraints and other operational variables are considered in the modeling and analysis of the DFIG reactive power capability. Reactive power requirements for both overhead and cable transmission systems are modeled and compared with each other as well as with the reactive power capability of the wind farms. Possibility of unity power factor operation suggested by the German Electricity Association (VDEW) is investigated for both types of installations. Aggregate reactive power demands on both wind farms are assessed such that the bus voltages remain within an acceptable bandwidth considering various operational limits. The reactive power settings for both types of wind farm installations are determined. In addition, the minimum capacity and reactive power settings for reactive power compensation required for cable‐based installations are determined. Several numerical examples are given to illustrate the reactive power characteristics and capability of DFIGs, performance of transmission lines and reactive power analysis for DFIG‐based grid‐connected wind farms. A summary of the main outcomes of the work presented in this paper is provided in the conclusions section. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号