首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water‐resistance properties of wood‐fiber‐reinforced recycled plastic composites (WRPCs) prepared from postconsumer high‐density polyethylene (HDPE) and wood fibers from saw mills were studied. Three methods consisting of an alkaline method (AM), a silane method (SM), and a combination of the alkaline and silane methods (ASM) were used to modify the wood fibers. The effects of fiber/matrix mix ratio and surface treatment on the moisture content, thickness swelling, and flexural strength change of the WRPCs, before and after immersion in 60°C water for 8 weeks, were studied and analyzed. The flexural fractured surfaces of the WRPCs before and after immersion in hot water were examined, and the fracture mechanism of the WRPCs was discussed. The results showed that the different surface treatments of the wood fibers had significant effects on the moisture content, thickness swelling, and flexural strength of the WRPCs after a long immersion time in hot water. For WRPCs treated by ASM, the moisture content was the lowest, the thickness swelling was at a minimum, and the flexural strength was the highest. Higher water absorption of composites with fiber treated by the AM or SM methods, as compared to those treated by ASM, could be attributed to the incomplete adhesion and wettability between the wood fibers and the polymer matrix, which may have caused more gaps and flaws at the interface. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers.  相似文献   

2.
This article presents the results of a study of the processing and physicomechanical properties of environmentally friendly wood‐fiber‐reinforced poly(lactic acid) composites that were produced with a microcompounding molding system. Wood‐fiber‐reinforced polypropylene composites were also processed under similar conditions and were compared to wood‐fiber‐reinforced poly(lactic acid) composites. The mechanical, thermomechanical, and morphological properties of these composites were studied. In terms of the mechanical properties, the wood‐fiber‐reinforced poly(lactic acid) composites were comparable to conventional polypropylene‐based thermoplastic composites. The mechanical properties of the wood‐fiber‐reinforced poly(lactic acid) composites were significantly higher than those of the virgin resin. The flexural modulus (8.9 GPa) of the wood‐fiber‐reinforced poly(lactic acid) composite (30 wt % fiber) was comparable to that of traditional (i.e., wood‐fiber‐reinforced polypropylene) composites (3.4 GPa). The incorporation of the wood fibers into poly(lactic acid) resulted in a considerable increase in the storage modulus (stiffness) of the resin. The addition of the maleated polypropylene coupling agent improved the mechanical properties of the composites. Microstructure studies using scanning electron microscopy indicated significant interfacial bonding between the matrix and the wood fibers. The specific performance evidenced by the wood‐fiber‐reinforced poly(lactic acid) composites may hint at potential applications in, for example, the automotive and packaging industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4856–4869, 2006  相似文献   

3.
The barrier properties of short‐fiber‐reinforced epoxy foam are characterized and compared with unreinforced epoxy foam in terms of moisture absorption, flammability properties, and impact properties. Compression and shear properties are also included to place in perspective the mechanical behavior of these materials. Compared with conventional epoxy foam, foam reinforced with aramid fibers exhibits higher moisture absorption and lower diffusion, while glass‐fiber‐reinforced foam is significantly stiffer and stronger. In addition, the polymeric foam composites studied present superior fire‐resistance compared with conventional epoxy foam systems. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3266–3272, 2006  相似文献   

4.
The effects of the type of coupling agent and virgin polypropylene (PP) content on the mechanical properties and water absorption behavior of recycled low‐density polyethylene/wood flour (WF) composites were investigated. The fractured surfaces of these recycled wood/plastic composites (rWPCs) were examined to gain insight into the distribution and dispersion of WF within the polymer matrix. The results indicate that the use of 100% recycled polymer led to inferior mechanical properties and to a greater degree of moisture absorption and swelling when compared to recycled polymer–virgin PP wood/plastic composites. This could have been related to the poor melt strength and inferior processability of the recycled polymer. The extent of improvement of the mechanical properties depended not only on the virgin PP content in the matrix but also on the presence of maleic anhydride (MA) modified PP as the coupling agent. Higher concentrations of MA group were beneficial; this improvement was attributed to increased chemical bonding (ester linkages) between hydroxyl moieties in WF and anhydride moieties in the coupling agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Fiber‐reinforced polymers have received considerable attention from industry in recent years. Due to the sharp ecological damage, worldwide shortage of trees in many areas and the global demand for fibrous material, there has been growing interest in the use of recycled wood fiber as an alternative or substitute fiber source. The present study investigates the tensile, flexural, Izod impact, and water absorption behavior of Old Corrugated Container (OCC) and aspen (AS) reinforced polypropylene (PP) composites as a function of fiber content. The surface of AS and OCC fibers was modified through the use of MAPP coupling agent. From the studies it was found that mechanical properties increase with increase in fiber loading in both cases. However the addition of wood fibers resulted in a decrease in impact strength of the composites. The water absorption property at varying fiber loading were evaluated and found maximum for the OCC/PP composites. The weight gains for all specimens were less than 3.5%. Finally, the results showed the usefulness of OCC fiber as a good alternative and reinforcing agent for composite. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

6.
Jute‐fibers‐reinforced thermoplastic composites are widely used in the automobile, packaging, and electronic industries because of their various advantages such as low cost, ease of recycling, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between jute fibers and the thermoplastic matrix. In this work, four methods, including (i) alkali treatment, (ii) alkali and silane treatment, (iii) alkali and (maleic anhydride)‐polypropylene (MAPP) treatment, and (iv) alkali, silane, and MAPP treatment (ASMT) were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced recycled polypropylene composites (JRPCS). The mechanical properties and impact fracture surfaces of the composites were observed, and their fracture mechanism was analyzed. The results showed that ASMT composites possessed the optimum comprehensive mechanical properties. When the weight fraction of jute fibers was 15%, the tensile strength and impact toughness were increased by 46 and 36%, respectively, compared to those of untreated composites. The strongest interfacial adhesion between jute fibers and recycled polypropylene was obtained for ASMT composites. The fracture styles of this kind of composite included fiber breakage, fiber pull‐out, and interfacial debonding. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers.  相似文献   

7.
The viability of the thermomechanical recycling of postconsumer milk pouches [a 50 : 50 low‐density polyethylene/linear low‐density polyethylene (LDPE–LLDPE) blend] and their use as polymeric matrices for coir‐fiber‐reinforced composites were investigated. The mechanical, thermal, morphological, and water absorption properties of recycled milk pouch polymer/coir fiber composites with different treated and untreated fiber contents were evaluated and compared with those of virgin LDPE–LLDPE/coir fiber composites. The water absorption of the composites measured at three different temperatures (25, 45, and 75°C) was found to follow Fickian diffusion. The mechanical properties of the composites significantly deteriorated after water absorption. The recycled polymer/coir fiber composites showed inferior mechanical performances and thermooxidative stability (oxidation induction time and oxidation temperature) in comparison with those observed for virgin polymer/fiber composites. However, a small quantity of a coupling agent (2 wt %) significantly improved all the mechanical, thermal, and moisture‐resistance properties of both types of composites. The overall mechanical performances of the composites containing recycled and virgin polymer matrices were correlated by the phase morphology, as observed with scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
Coir and abaca fiber‐reinforced linear low density polyethylene (LLDPE) composites (30 wt% fiber) were prepared by compression molding. Coir and abaca fibers were treated with methyl methacrylate (MMA) using ultraviolet radiation to improve the mechanical properties of the composites. Concentration of MMA and radiation dose was optimized. It was found that 30% MMA in methanol along with photoinitiator Darocur‐1173 (2%) and 15th pass of radiation rendered better performance. Chemically treated fiber‐reinforced specimens yielded better mechanical properties compared to the untreated composites, whereas coir fiber composites had better mechanical properties than abaca fiber reinforced ones. For the improvement of the properties, optimized coir (coir fiber treated with 30% MMA) and abaca (abaca fiber treated with 40% MMA) fibers were again treated with aqueous starch solution (2%–8%, w/w) for 2–7 min. Composites made of 3%‐starch‐treated coir fiber (5 min soaking time) showed the best mechanical properties than that of abaca‐fiber‐based composites. Water uptake and soil degradation tests of the composites were also performed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
《Polymer Composites》2017,38(7):1231-1240
The main objective of this research is to study the effect of recycled low density polyethylene (r‐LDPE) matrix on the tensile, impact, and flexural properties of the novel textile waste cotton fiber reinforced (T‐FRP) composites. For this purpose, the T‐FRP composites were manufactured by using two different matrix types; namely, virgin LPDE (v‐LDPE) and r‐LDPE, with different waste cotton fiber content. All composites were compatibilized by maleic anhydride‐LDPE (MA‐LDPE) in order to increase the interfacial adhesion between fibers and matrices. Differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic mechanical analyzer studies were performed in order to characterize the materials. The results have shown that best tensile and flexural properties have been obtained from the composites with the content of 30 wt% cotton fiber, 5 wt% maleic anhydride‐LDPE, and 65 wt% recycled LDPE matrix. However, the impact properties of the composites were decreased drastically compared to the pure LDPE matrix. POLYM. COMPOS., 38:1231–1240, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
The utilization of disposable chopsticks is very popular in Taiwan, China, and Japan and is one of the major sources of waste in these countries. In this study, recycled disposable chopstick fiber was chemically modified. Subsequently, this modified fiber and polypropylene‐graft‐maleic anhydride were added to polypropylene (PP) to form novel fiber‐reinforced green composites. A heat‐deflection temperature (HDT) test showed an increase of approximately 81% for PP with the addition of 60‐phr fibers, and the HDT of the composite could reach up to 144.8°C. In addition, the tensile strength, Young's modulus, and impact strength were 66, 160.3, and 97.1%, respectively, when the composite material was 40‐phr fibers. Furthermore, this type of reinforced PP would be more environmentally friendly than an artificial‐additive‐reinforced one. It could also effectively reduce and reuse the waste of disposable chopsticks and lower the costs of the materials. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Wood is one of the main materials used for making musical instruments due to its outstanding acoustical properties. Despite such unique properties, its inferior mechanical properties, moisture sensitivity, and time‐ and cost‐consuming procedure for making instruments in comparison with other materials (e.g., composites) are always considered as its disadvantages in making musical instruments. In this study, the acoustic parameters of three different polyester composites separately reinforced by carbon fiber, glass fiber, and hemp fiber are investigated and are also compared with those obtained for three different types of wood specimens called poplar, walnut, and beech wood, which have been extensively used in making Iranian traditional musical instruments. The acoustical properties such as acoustic coefficient, sound quality factor, and acoustic conversion factor were examined using some non‐destructive tests based on longitudinal and flexural free vibration and also forced vibration methods. Furthermore, the water absorption of these polymeric composites was compared with that of the wood samples. The results reveal that the glass fiber‐reinforced composites could be used as a suitable alternative for some types of wood in musical applications while the carbon fiber‐reinforced composites are high performance materials to be substituted with wood in making musical instruments showing exceptional acoustical properties. POLYM. COMPOS., 35:2103–2111, 2014. © 2014 Society of Plastics Engineers  相似文献   

12.
The durability of entirely bio‐based composites with respect to the exposure to elevated humidity was evaluated. Different combinations of bio‐based resins (Tribest, EpoBioX, Envirez) and cellulosic fibers (flax and regenerated cellulose fiber rovings and fabrics) were used to manufacture unidirectional and cross‐ply composite laminates. Water absorption experiments were performed at various humidity levels (41%, 70%, and 98%) to measure apparent diffusion coefficient and moisture content at saturation. Effect of chemical treatment (alkali and silane) of fibers as protection against moisture was also studied. However, fiber treatment did not show any significant improvement and in some cases the performance of the composites with treated fibers was lower than those with untreated reinforcement. The comparison of results for neat resins and composites showed that moisture uptake in the studied composites is primarily due to cellulosic reinforcement. Tensile properties of composites as received (RH = 24%) and conditioned (RH = 41%, 70%, and 98%) were measured in order to estimate the influence of humidity on behavior of these materials. Results were compared with data for glass fiber reinforced composite, as a reference material. Previous results from study of unreinforced polymers showed that resins were resistant to moisture uptake. Knowing that moisture sorption is primarily dominated by natural fibers, the results showed that some of the composites with bio‐based resins performed very well and have comparable properties with composites of synthetic epoxy, even at elevated humidity. POLYM. COMPOS., 36:1510–1519, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
In recent years, natural fibers reinforced composites have received much attention because of their lightweight, nonabrasive, combustible, nontoxic, low cost and biodegradable properties. Among the various natural fibers; flax, bamboo, sisal, hemp, ramie, jute, and wood fibers are of particular interest. A lot of research work has been performed all over the world on the use of natural fibers as a reinforcing material for the preparation of various types of composites. However, lack of good interfacial adhesion, low melting point, and poor resistance towards moisture make the use of natural fiber reinforced composites less attractive. Pretreatments of the natural fiber can clean the fiber surface, chemically modify the surface, stop the moisture absorption process, and increase the surface roughness. Among the various pretreatment techniques, graft copolymerization and plasma treatment are the best methods for surface modification of natural fibers. Graft copolymers of natural fibers with vinyl monomers provide better adhesion between matrix and fiber. In the present article, the use of pretreated natural fibers in polymer matrix‐based composites has been reviewed. Effect of surface modification of natural fibers on the properties of fibers and fiber reinforced polymer composites has also been discussed. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

14.
Natural fiber‐reinforced nanocomposites based on polypropylene/nanoclay/banana fibers were fabricated by melt mixing in a twin‐screw extruder followed by compression molding in this current study. Maleic anhydride polypropylene copolymer (MA‐g‐PP) was used as a compatibilizer to increase the compatibility between the PP matrix, clay, and banana fiber to enhance exfoliation of organoclay and dispersion of fibers into the polymer matrix. Variation in mechanical, thermal, and physico‐mechanical properties with the addition of banana fiber into the PP nanocomposites was investigated. It was observed that 3 wt% of nanoclay and 5 wt% of MA‐g‐PP within PP matrix resulted in an increase in tensile and flexural strength by 41.3% and 45.6% as compared with virgin PP. Further, incorporation of 30 wt% banana fiber in PP nanocomposites system increases the tensile and flexural strength to the tune of 27.1% and 15.8%, respectively. The morphology of fiber reinforced PP nanocomposites has been examined by using scanning electron microscopy and transmission electron microscopy. Significant enhancement in the thermal stability of nanocomposites was also observed due to the presence of nanoclay under thermogravimetric analysis. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), conforming the strong interaction between nanoclay/banana fiberand MA‐g‐PP in the fiber‐reinforced nanocomposites systems. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

15.
This article discusses the interrelation between formulation, processing, and properties of biocomposites composed of a bioplastic reinforced with wood fibers. Polylactide (PLA) and polylactide/thermoplastic starch blends (PLA/TPS) were used as polymeric matrices. Two grades of PLA, an amorphous and a semicrystalline one, were studied. TPS content in the PLA/TPS blends was set at 30, 50, and 70 wt%. Two types of wood fiber were selected, a hardwood (HW) and a softwood (SW), to investigate the effect of the fiber type on the biocomposite properties. Finally, the impact of different additives on biocomposite properties was studied with the purpose to enhance the bioplastic/wood fiber adhesion and, therefore, the final mechanical performance. The biocomposites containing 30 wt% of wood fibers were obtained by twin‐screw extrusion. The properties of the biocomposites are described in terms of morphology, thermal, rheological, and mechanical properties. Furthermore, the biocomposites were tested for humidity and water absorption and biodegradability. An almost 100% increase in elastic modulus and 25% in tensile strength were observed for PLA/wood fiber biocomposite with the best compatibilization strategy used. The presence of the TPS in the biocomposites at 30 and 50 wt% maintained the tensile strength higher or at least equal as for the virgin PLA. These superior tensile results were due to the inherent affinity between the matrices and wood fibers improved by the addition of a combination of coupling and a branching agent. In addition to their outstanding mechanical performance, the biocomposites showed high biodegradation within 60 days. POLYM. ENG. SCI., 54:1325–1340, 2014. © Her Majesty the Queen in Right of Canada 2013 1   相似文献   

16.
The submitted work discussed the possibility of using two of the most problematic wastes to formulate an added‐value hard wood‐composite (HWC). The lignocellulosic rice straws (RS) fibers (as reinforced filler) and recycled expanded polystyrene foam (PS) wastes (as dispersed polymer matrix), were used to formulated the hard wood product applying the hot press technique. The air dried RS was added to the molten PS at increasing ratios (30–70% mass:mass), and the reached HWC sheet was subjected to tensile strength, water absorption and acoustic resistance characterizations. Based on the experimental data, it was found that increasing the RS contents accompanied with a diminish in the tensile strength value by about 50% at 70% RS compare to that at 30% RS. To improve the adhesion between the hydrophilic filler RS and the hydrophobic PS matrix, maleated PS graft (PS‐g‐MA) was prepared and added at the expanse of the PS content, to formulate an additional wood‐composite (HWCg) aiming to have better mechanical and dimensional stability features. Results obtained indicated that increasing the coupling agent content, keeping the RS added constant, enhance the tensile strength feature in addition, reduced the water absorption for the final products by more than 45%. The data obtained suggested that, it can create added‐value hard wood composites entirely from the two nominated problematic wastes. In addition to the value gained by the environment, the reached hard wood products record acceptable mechanical characterization, dimensional stability and sound resistance properties that qualified it to replace the natural wood in many daily applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44770.  相似文献   

17.
以西北地区麦秸秆纤维(WSF)和聚乳酸(PLA)为原料,通过熔融共混的方式加工制备了PLA/WSF复合材料,研究了偶联剂γ—氨丙基三乙氧基硅烷(KH550)对PLA/WSF复合材料的力学性能、吸水性能及界面性能的影响。利用傅里叶变换红外光谱仪(FITR)对改性前后的WSF进行分析,采用扫描电子显微镜(SEM)研究了复合材料拉伸断面的形貌变化。结果表明,KH550与WSF中羟基的反应降低了WSF表面极性;随着WSF含量的增加,PLA/WSF复合材料的力学性能最终呈现下降的趋势;经KH550对WSF改性处理, PLA/WSF复合材料的力学性能得到提升,同时降低了复合材料的吸水性;KH550处理改善了WSF与PLA的界面相容性。  相似文献   

18.
The influence of recycling on the impact damage resistance of recycled carbon fiber‐reinforced polymer (CFRP) composites was investigated using low‐velocity impact and compression after impact (CAI) tests. The relationships among load, force, and time were analyzed to gain insight into the damage characteristics of three types of composite laminate: virgin CF‐reinforced polymer (V‐CFRP), recycled CF‐reinforced polymer (R‐CFRP), and treated recycled CF‐reinforced polymer (TR‐CFRP). Special emphasis was placed on evaluating the extent of damage and the residual mechanical properties as affected by three different fiber surface states. Substantial differences were noted in the shape, area, and damage mode of impact using ultrasonic c‐scanning, photography, and scanning electron microscopy (SEM). V‐CFRP indicated significant improvement in impact damage resistance in the form of less damage, higher residual strength, and greater shear failure angle. Damage resistance was improved up to 80% of V‐CFRP by surface cleaning while R‐CFRP is 50% of V‐CFRP. Shear failure angle of 16° was attained from R‐CFRP and it was increased to 24° when the recycled fibers were cleaned. The result of SEM showed that there was less delamination of TR‐CFRP compared with R‐CFRP. This work proves that the low‐velocity impact response of recycled composites can rival that of virgin composites, while providing a basis for future applications of recycled carbon in many fields. POLYM. COMPOS., 35:1494–1506, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
Natural fibers are seeing increased use in composite applications due to their reduced cost, low density, and environmental benefits (more sustainable and lower carbon footprint). Although many natural fiber systems have been examined over the last decade, there have been relatively few studies which have compared a variety of fiber types and processing methods directly in the same experimental set. In this study, natural fiber composites made from low density polyethylene (LDPE) and a variety of Canadian based fiber feedstocks were examined including hemp bast, flax bast, chemically pulped wood, wood chips, wheat straw, and mechanically pulped triticale. The effect of fiber type, fiber fraction and maleic anhydride polyethylene (MAPE) coupling agent on the mechanical properties and long‐term moisture absorption behavior was quantified. In general, addition of natural fiber to LDPE results in an increase in modulus (stiffness) with a corresponding loss of material elongation and impact toughness. Of the fiber types tested, composites made from chemically pulped wood had the best mechanical properties and the least moisture absorption. However, the use of MAPE coupling agent was found to significantly increase the mechanical performance and reduce moisture absorption for all other natural fiber types. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 969‐980, 2013  相似文献   

20.
The influence of oxygen plasma treatment on both surface properties of poly(p‐phenylene benzobisoxazole) (PBO) fibers and interfacial properties of PBO fiber reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite were investigated. Surface chemical composition, surface roughness, and surface morphologies of PBO fibers were analyzed by X‐ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. Surface free energy of the fibers was characterized by dynamic contact angle analysis (DCAA). The interlaminar shear strength (ILSS) and water absorption of PBO fiber‐reinforced PPESK composite were measured. Fracture mechanisms of the composite were examined by SEM. The results indicated that oxygen plasma treatment significantly improved the interfacial adhesion of PBO fiber‐reinforced PPESK composite by introducing some polar or oxygen‐containing groups to PBO fiber surfaces and by fiber surface roughening. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号