首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel polyimide‐γ‐Fe2O3 hybrid nanocomposite films (PI/γ‐Fe2O3) has been developed from the poly(amic acid) salt of oxydianiline with different weight percentages (5, 10, 15 wt %) of γ‐Fe2O3 using tetrahydrofuran (THF) and N,N‐dimethylacetamide (DMAc) as aprotic solvents. The prepared polyimide‐γ‐Fe2O3 nanocomposite films were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), transmission electron micrograph (TEM), X‐ray diffraction (XRD), 13C‐NMR, and thermal analysis (TGA/DSC) techniques. These studies showed the homogenous dispersion of γ‐Fe2O3 in the polyimide matrix with an increase in the thermal stability of the composite films on γ‐Fe2O3 loadings. Magnetization measurements (magnetic hysteresis traces) have shown very high values of coercive force indicating their possible use in memory devices and in other related applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 834–840, 2007  相似文献   

2.
Polyaniline (PANI)‐α‐Fe2O3 nanocomposites (NCs) have been synthesized by chemical oxidative in situ polymerization of aniline in presence of α‐Fe2O3 nanoparticles at 5°C using (NH4)2S2O8 as an oxidant in an aqueous solution of sodium dodecylbenzene sulphonic acid (SDBS), as surfactant and dopant under N2 atmosphere. The room temperature conductivity of NCs decreases and coercive force (Hc) increases with an increase addition of α‐Fe2O3 in PANI matrix. The result of FTIR and TGA shows that the interaction between α‐Fe2O3 particles and PANI matrix could improve the thermal stability of NCs. NCs demonstrate the superparamagnetic behavior. The performance of PANI and PANI‐α‐Fe2O3 NCs as protective coating, against corrosion of 316LN stainless steel in 3.5% NaCl was assessed by potentiodynamic polarization technique. The study shows a good corrosion inhibition effect of both the coatings. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
In this article, conductive and magnetic nanocomposites composed of polypyrrole (PPy), magnetite (Fe3O4) nanoparticles (NPs), silver (Ag) NPs, have been successfully synthesized with a two step process. First, the PPy/Fe3O4 was prepared by the ultrasonic in situ polymerization. Next, the PPy/Fe3O4/Ag was synthesized through the electrostatic adsorption. The products were characterized by fourier‐transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), Thermogravimetric (TG), conductivity and magnetization analysis, and the results showed that the Ag NPs with the good conductivity coated uniformly on the surface of PPy/Fe3O4 and improved the conductivity of PPy/Fe3O4/Ag composites. In addition, as compared with PPy/Fe3O4, PPy/Fe3O4/Ag composites also have the excellent electro‐magnetic property and enhanced thermostability. POLYM. COMPOS., 35:450–455, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
The purpose of this study was to systematically synthesize and characterize the high surface area 10 wt% nanocomposites of α‐Fe2O3 (hematite)/silica using a simple and economically effective homogenous precipitation (HP) route via Response Surface Method combined with Central Composite Design (CCD). Accordingly, the RSM‐CCD approach including 20 experiments was designed to investigate the effects of three factors including concentration of iron chloride solution, pH and calcinations temperature on the final surface area of α‐Fe2O3/silica nanocomposites. The optimum surface area was 373 m2/g at the condition including iron chloride concentration of 0.018 mol/L, pH=8.95, and calcination temperature of 573°C.  相似文献   

5.
Polypyrrole and its nanocomposites were obtained by chemical polymerization by using anhydrous ferric chloride as an oxidant in the presence of dodecylbenzensulfonate and poly(vinyl alchohol) as surfactants and iron (III) oxide nanoparticles in aqueous media. The products were characterized, such as morphology, chemical structure, and crystalline nature, by using analysis by scanning electron microscope, Fourier‐transform infrared spectrometry, and X‐ray diffraction. The results indicated that sodium dodecylbenzene‐sulfonate, poly(vinyl alcohol), and Fe2O3 nanoparticles influenced the properties of products. Scanning electron microscope analysis results indicated that when additives were added to the pyrrole matrix, the size of the product decreased and homogeneity increased. Fourier‐transform infrared spectrometry confirmed that nanocomposites formed in the presence of surfactant. X‐ray diffraction pattern analysis confirmed the presence of Fe2O3 nanoparticles in the nanocomposite matrix. J. VINYL ADDIT. TECHNOL., 22:362–367, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
Polyaniline (PANI)‐Ag nanocomposites were synthesized by in situ chemical polymerization approach using ammonium persulfate and silver nitrate as oxidant. Characterizations of nanocomposites were done by ultraviolet–visible ( UV–vis), Fourier transform infrared (FTIR), X‐ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). UV–vis, XRD and FTIR analysis established the formation of PANI/Ag nanocomposites and face‐centered‐cubic phase of silver. PANInanofibers were of average diameter ~ 30 nm and several micrometers in length. Morphological analysis showed that the spherical‐shaped silver nanoparticles decorate the surface of PANI nanofibers. Silver nanoparticles of average diameter ~ 5–10 nm were observed on the TEM images for the PANI‐Ag nanocomposites. Such type of PANI‐Ag nanocomposites can be used as bistable switches as well as memory devices. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Conducting polyaniline (PAni)/activated carbon (AC) nanocomposites were synthesized by the in situ chemical polymerization method. The resultant shell–core PAni–AC nanocomposites were characterized by elemental analysis, Fourier transform infrared, scanning electron microscopy, thermal gravimetric analysis, X‐ray diffraction, and transmission electron microscopy. We did not observe any significant chemical interaction between the PAni and AC, only core–shell coupling between the AC and the tightly coated polymer chain was revealed. Measurement of the physical properties showed that the incorporation of conducting PAni on to AC particles during chemical synthesis increased electrical conductivity and thermal stability by several orders of magnitude to that of the pristine PAni powders. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1973–1977, 2007  相似文献   

8.
An optically active poly(amide‐imide) (PAI) was synthesized from the polymerization reaction of N,N′‐(Pyromellitoyl)‐bis‐l ‐alanine diacid chloride with 2,5‐diaminotoluene. The obtained inorganic metal oxide nanocomposites composed of PAI/nanostructured hematite (α‐Fe2O3) were synthesized through ultrasonic irradiation. The resulting nanocomposites were characterized by Fourier transform infrared spectroscopy, powder X‐ray diffraction, transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The TEM results indicated that the nanoparticles were dispersed homogeneously in PAI matrix on nanoscale. TGA confirmed that the heat stability of the nanocomposites was improved in the presence of α‐Fe2O3 nanoparticles. POLYM. COMPOS., 37:1805–1811, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
A sonochemical technique is used for in situ coating of iron oxide (Fe3O4) nanoparticles on outer surface of MWCNTs. These Fe3O4/MWCNTs were characterized using a high‐resolution transmission electron microscope (HRTEM), X‐ray diffraction, and thermogravimetric analysis. The as‐prepared Fe3O4/MWCNTs composite nanoparticles were further used as reinforcing fillers in epoxy‐based resin (Epon‐828). The nanocomposites of epoxy were prepared by infusion of (0.5 and 1.0 wt %) pristine MWCNTs and Fe3O4/MWCNTs composite nanoparticles. For comparison purposes, the neat epoxy resin was also prepared in the same procedure as the nanocomposites, only without nanoparticles. The thermal, mechanical, and morphological tests were carried out for neat and nanocomposites. The compression test results show that the highest improvements in compressive modulus (38%) and strength (8%) were observed for 0.5 wt % loading of Fe3O4/MWCNTs. HRTEM results show the uniform dispersion of Fe3O4/MWCNTs nanoparticles in epoxy when compared with the dispersion of MWCNTs. These Fe3O4/MWCNTs nanoparticles‐infused epoxy nanocomposite shows an increase in glass transition (Tg) temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
纳米棒状氧化铁红的制备及表征   总被引:1,自引:0,他引:1  
以尿素为沉淀剂,采用缓慢滴加方式,用均匀沉淀法制备了纳米棒状氧化铁红。考察了Fe^2+浓度、反应时间、反应温度、尿素与Fe^2+物质的量比等因素对产品粒径、形貌及收率的影响,并用TG,XRD,IR,UV-VIS,TEM等对样品进行了表征。确定了制备纳米棒状氧化铁红的最佳工艺条件:Fe^2+浓度为0.50 mol/L,反应时间为180 min,反应温度为80℃,尿素与Fe^2+物质的量比为20∶1,在此条件下制得前驱体,将前驱体在350℃下煅烧2 h,即可得到纳米棒状氧化铁红。样品的XRD,TEM表征结果为六方晶系的纳米棒状α-Fe2O3,其长轴约为300-500 nm,短轴约为20-40 nm,产品收率为75.90%,颜色为鲜红色,含质量分数5%样品的清漆对紫外线具有很好的吸收性能,而对可见光具有良好的透明性,其透光率在85%以上,可作为透明氧化铁红颜料使用。  相似文献   

11.
通过将金纳米粒子铆接到Fe3O4载体表面,制得了Au/Fe3O4纳米复合粒子。首先以对苯二酚为还原剂还原HAuCl4制得球形金纳米粒子;然后采用溶剂热法制备Fe3O4磁性纳米颗粒,并用巯基丙酸(MPA)对其修饰;最后通过MPA与金纳米粒子之间的相互作用,将金纳米颗粒固定到Fe3O4表面。采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和振动样品磁强计(VSM)和紫外-可见分光光度计(UV-vis)对所制备材料进行形貌、晶型、磁性和催化性能的表征。结果表明,金纳米颗粒成功包覆在Fe3O4表面,所得到的Au/Fe3O4复合纳米材料具有单分散性和超顺磁性,并且对NaBH4还原对硝基苯酚(4-NP)制备对氨基苯酚(4-AP)的反应显示出优良的催化性能。  相似文献   

12.
13.
Polyaniline (PANI)–organoclay nanocomposites were prepared. Intercalation of aniline monomer into montmorillonite (MMT) modified by polyoxyalkylene was followed by subsequent oxidative polymerization of the aniline in the interlayer spacing. The organoclay was prepared by cation exchange process between sodium cation in MMT and onium ion in four different types of polyoxyalkylene diamine and triamine with different molecular weight. Infrared spectra confirm the electrostatic interaction between the positively charged onium group (NH3+) and the negatively charged surface of MMT. X‐ray diffraction analysis provides a structural information. The absence of d001 diffraction band in the nanocomposites was observed at certain types and contents of organoclay. Scanning electron microscopy and transmission electron microscopy were employed to determine the dispersion of the clay into PANI. The thermal degradation behavior of PANI in the nanocomposites has been investigated by thermogravimetric analysis. The weight loss suggests that the PANI chains in the nanocomposites are more thermally stable than pristine PANI. This improvement is attributed to the presence of nanolayers with high aspect ratio acting as barriers, thus shielding the diffusion of degraded PANI from the nanocomposites. The electrical conductivity of the nanocomposites was increased 30 times more than that of pure MMT at a certain concentration. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
纳米光催化剂TiO_2/Fe_3O_4的制备及表征   总被引:2,自引:3,他引:2  
寇生中  胡聪丽 《应用化工》2008,37(1):67-70,73
采用两步法制备磁性负载纳米光催化剂TiO2/Fe3O4。首先用液相共沉淀法制备磁性纳米Fe3O4颗粒;然后用溶胶-凝胶法,以钛酸四正丁酯为先驱体,通过水解缩聚在Fe3O4纳米颗粒表面包覆TiO2层,得到易于磁分离回收的复合纳米光催化剂TiO2/Fe3O4,粒径大约为30 nm。利用TEM、XRD、FT-IR、VSM对Fe3O4和TiO2/Fe3O4的结构和性能进行了表征,结果表明,制备的Fe3O4为面心立方晶体(FCC)结构,具有超顺磁性;TiO2为锐钛矿相,包覆在Fe3O4的表面,形成了核-壳式结构的TiO2/Fe3O4复合光催化剂。  相似文献   

15.
The aim of this investigation was to design iron oxide containing nanocomposites which could display superparamagnetic behavior and thus find application in biomedical and allied fields. To achieve the proposed objectives methyl methacrylate was polymerized by a redox system comprising of metabisulphite and persulphate in the immediate presence of a crosslinker, N,N′‐methylene bis acrylamide and a preformed polymer, i.e., polyvinyl alcohol. Into the prepared polymer matrix nanosized magnetite (Fe3O4) particles were evenly dispersed by in situ precipitation of Fe2+/Fe3+ ions. The nanocomposite materials were characterized by techniques like FTIR, SEM, TEM, XRD, and DSC. The magnetic behavior of nanocomposites and bulk magnetite particles was studied under varying applied magnetic fields and their superparamagnetic property was examined. The iron‐oxide polymer nanocomposites were also studied for microhardness. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

16.
Poly(styrene butylacrylate) latex/nano‐ZnO composites were prepared by blending poly(styrene butylacrylate) latex with a water slurry of nano‐ZnO particles, and the effects of certain parameters, such as particle size, dispersant type, dispersing time and others, on the dispersibility, mechanical properties, ultraviolet (UV) shielding and near infrared (NIR) shielding were investigated with transmission electron microscopy (TEM), an Instron testing machine, dynamic mechanical analysis and ultraviolet‐visible‐near infrared (UV‐VIS‐NIR) spectrophotometry. TEM observation showed that dispersants with long chains are better than those with short chains at enhancing the dispersibility of nano‐ZnO particles in a matrix; extending dispersing time also improves the dispersibility of nano‐ZnO particles in a matrix. Instron tests showed that the nanocomposite polymers embedded with nano‐ZnO particles had much higher tensile strength than the corresponding composite polymers with micro‐ZnO particles. As the nano‐ZnO content increased, the temperature of glass transition (Tg) of the nanocomposite polymer embedded with 60 nm ZnO particles first increased then decreased, but 100 nm ZnO and micro‐ZnO particles seemed to have no influence on the Tg of the composite polymers. The better dispersibility of nano‐ZnO particles resulted in higher Tg values. Increasing nano‐ZnO content or dispersibility could enhance the UV shielding properties of the nanocomposite polymers, and 60 nm ZnO particles could more effectively shield UV rays than 100 nm ZnO particles. Micro‐ZnO particles basically had no effect on the UV absorbance of the composite polymers. A blue‐shift phenomenon was observed at 365 nm when nano‐ZnO particles were present in the nanocomposite polymers. NIR analysis indicated that as nano‐ZnO content increased, the NIR shielding of the nanocomposite polymers increased, but the NIR shielding properties seemed to be more influenced by particle size than by the nano‐effect. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1923–1931, 2003  相似文献   

17.
Sulfonated‐p‐cresol (SPC) was used as novel dopant for the first time in the synthesis of polyaniline in 3D nanofiber networks (PANI‐3D). Polyaniline in 3D nanofiber network was prepared using organic solvent soluble benzoyl peroxide as oxidizing agent in presence of SPC and sodium lauryl sulfate (SLS) surfactant via inverted emulsion polymerization pathway. The influence of synthesis conditions such as the concentration of the reactants, stirring/static condition, and temperature etc., on the properties and formation of polyaniline nanofiber network were investigated. Polyaniline in 3D nanofiber network with 40–160 nm (diameter), high yield (134 wt % with respect to aniline used), and reasonably good conductivity (0.1 S/cm) was obtained in 24 h time. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Poly(ethyl methacrylate) (PEMA) and poly(2‐hydroxyethyl methacrylate) (PHEMA) nanocomposites with sepiolite in pristine and silylated form were prepared using the solution intercalation method and characterized by the measurements of XRD, TEM, FTIR‐ATR, TG/DTG, and DSC. The TEM analysis indicated that the volume fraction of fibers in sepiolite decreased and the fiber bundles dispersed in PEMA and PHEMA at a nanometer scale. These results regarding TEM micrographs were in agreement with the data obtained by XRD. The increase in thermal stability of nanocomposites of PEMA is higher than that of PHEMA according to the data obtained from TG curves. The DTG analysis revealed that sepiolite/modified sepiolite caused some changes, as confirmed by FTIR in the thermal degradation mechanism of the polymers. Tg temperatures of PEMA and PHEMA usually increased upon the addition of sepiolite/modified sepiolite. In addition, modification of sepiolite with 3‐APTS had a slight influence on thermal properties of the nanocomposites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
Poly(styrene‐co‐butadiene) rubber (SBR) and polybutadiene rubber (BR)/clay nanocomposites have been prepared. The effects of the incorporation of inorganically and organically modified clays on the vulcanization reactions of SBR and BR were analysed by rheometry and differential scanning calorimetry. A reduction in scorch time (ts1) and optimum time (t95) was observed for both the rubbers when organoclay was added and this was attributed to the amine groups of the organic modifier. However, ts1 and t95 were further increased as the clay content was increased. A reduction in torque value was obtained for the organoclay nanocomposites, indicating a lower number of crosslinks formed. The organoclays favoured the vulcanization process although the vulcanizing effect was reduced with increasing clay content. The tensile strength and elongation of SBR were improved significantly with organoclay. The improvement of the tensile properties of BR with organoclay was less noticeable than inorganic‐modified clay. Nevertheless, these mechanical properties were enhanced with addition of clay. The mechanical properties of the nanocomposites were dependent on filler size and dispersion, and also compatibility between fillers and the rubber matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Magnetic Fe3O4/waterborne polyurethane nanocomposites were synthesized based on waterborne polyurethane (WPU) and amino-functionalized Fe3O4 by in situ polymerization. The Fe3O4 nanoparticle was found to be uniformly distributed in Fe3O4/WPU nanocomposites with linear or crosslinked structure. In addition, the formation mechanism and magnetic conduction mechanism of stable inorganic–organic nanocomposites were discussed. The experimental results showed that the thermal stability, magnetic, and mechanical properties of magnetic Fe3O4/waterborne polyurethane nanocomposites were improved by amino functionalized Fe3O4. Furthermore, the defoaming property of the emulsion and the hydrophobic property of magnetic Fe3O4/waterborne polyurethane nanocomposites were improved by the 1-hexadecanol-terminated prepolymer. What more, polycaprolactone (PCL)-based Fe3O4/WPU nanocomposites have excellent mechanical properties (The tensile strength is over 30 MPa, the elongation rate is above 300%.) and magnetic properties. Magnetic Fe3O4/waterborne polyurethane nanocomposites will be used in the field of hydrophobic and microwave absorbent materials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48546.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号