共查询到20条相似文献,搜索用时 15 毫秒
1.
Cumali ?lkiliç 《Renewable & Sustainable Energy Reviews》2012,16(2):1165-1173
In this study, the potential of wind energy and assessment of wind energy systems in Turkey were studied. The main purpose of this study is to investigate the wind energy potential and future wind conversion systems project in Turkey. The wind energy potential of various regions was investigated; and the exploitation of the wind energy in Turkey was discussed. Various regions were analyzed taking into account the wind data measured as hourly time series in the windy locations. The wind data used in this study were taken from Electrical Power Resources Survey and Development Administration (EIEI) for the year 2010. This paper reviews the assessment of wind energy in Turkey as of the end of May 2010 including wind energy applications. Turkey's total theoretically available potential for wind power is around 131,756.40 MW and sea wind power 17,393.20 MW annually, according to TUREB (TWEA). When Turkey has 1.5 MW nominal installed wind energy capacity in 1998, then this capacity has increased to 1522.20 MW in 2010. Wind power plant with a total capacity of 1522.20 MW will be commissioned 2166.65 MW in December 2011. 相似文献
2.
This study examines the effect of different wind turbine classes on the electricity production of wind farms in three areas of Australia, which present low, low to medium, and medium to high wind potential: Gingin, Armidale, and Gold Coast Seaway. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from six different manufacturers have been used. For each manufacturer, at lest two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC I, IEC II and/or IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (higher IEC class) in all three locations, in terms of energy production. This improvement is higher for the locations with lower and medium wind potential (Gingin and Armidale), and varies from 5% to 55%. Moreover, this study investigates the economical feasibility of a 30 MW wind farm, for all combinations of site locations and wind turbine models. 相似文献
3.
Pakistan needs substantial amount of energy to develop its industry and to increase the agricultural productivity. The available indigenous energy resources are limited. The only option which the country has to pursue is renewable energy. This paper identifies the potentials of solar and wind energy. The prime sites for wind are coastal area, arid zone and hill terrains. Solar energy is abundant over most part of the country, maximum being received over Quetta valley. 相似文献
4.
This paper presents the current status of Turkey's electricity power sector, efforts for introducing competition in the Turkey's power industry, and concerns with the restructuring in Turkey. Turkey include long-term high-cost agreements, low quality of power, and therefore restrictions for synchronization with UCTE network, increase in the reliance on imported natural gas, and the urgent need for highly qualified staff that would be capable of fast and reliable implementation of ongoing reforms in the electricity sector. The contribution of the exploiting wind energy potential in Turkey to reconstruction of Turkey electricity structure is investigated. The strong development of wind energy in Turkey is expected to continue in the coming years. 相似文献
5.
The aim of this paper is to review wind speed distribution and wind energy availability in Nigeria and discuss the potential of using this resource for generation of wind power in the country. The power output from a wind turbine is strongly dependent on the wind speed and accurate information about the wind data in a targeted location is essential. The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m2 based on recent reported data. The trend shows that wind speeds are low in the south and gradually increases to relatively high speeds in the north. The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified. Also some of the challenges facing the development of wind energy and suggested solutions were presented. 相似文献
6.
To meet the increasing global demand for renewable energy, such as wind energy, an increasing number of wind parks are being constructed worldwide. Finding a suitable location requires a detailed and often costly analysis of local wind conditions. Plain average wind speed maps cannot provide a precise forecast of wind power because of the non-linear relationship between wind speed and production. We suggest a new approach to assess the local wind energy potential. First, meteorological reanalysis data are applied to obtain long-term low-scale wind speed data at specific turbine locations and hub heights. Second, the relation between wind data and energy production is determined via a five parameter logistic function using actual high-frequency energy production data. The resulting wind energy index allows for a turbine-specific estimation of the expected wind power at an unobserved location. A map of the wind power potential for Germany exemplifies our approach. 相似文献
7.
The rapid increase in world energy demand, the depletion of conventional energy sources and the pollution caused by conventional fuels have increased the importance of developing new and renewable energy sources. Additionally, technological developments have resulted in increased energy demand for the entire world, including Turkey, especially for electrical energy. At present, wind energy is receiving considerable attention. This report focuses on the current status of wind energy in Turkey and in the world. An overview of wind energy in Turkey is presented, and its current status, application, support mechanisms and associated legislation in Turkey are described. Wind energy and its status in the world are also addressed. It can be concluded from this analysis that wind energy utilization in Turkey and throughout world has sharply increased. Turkey has an abundance of wind energy sources. 相似文献
8.
G. De Mey 《Energy Conversion and Management》1980,20(3):201-203
Recently, a new principle has been presented to convert wind energy directly into electric power. The basic idea is that the wind carries charged particles and hence bears an electric current. In this contribution the IV characteristics of such a device will be calculated starting from a conduction model for the charged particles. From the IV characteristics, the maximum attainable power and the influence of several device parameters will be investigated. 相似文献
9.
Salvador Izquierdo 《Solar Energy》2011,85(1):208-213
The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). 相似文献
10.
The development of renewable energy in markets with competition at wholesale and retail levels poses challenges not present in areas served by vertically-integrated utilities. The intermittent nature of some renewable energy resources impact reliability, operations, and market prices, in turn affecting all market participants. Meeting renewable energy goals may require coordination among many market players. 相似文献
11.
《Energy Policy》2014
Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. 相似文献
12.
The main objective of this paper is to present a study on the wind energy potential that is being developed in the Region of Trás-os-Montes and Alto Douro. This study started in July 1996 and will continue until the end of 1998.In order to have an adequate characterisation of the wind energy potential in this region it is necessary to measure the wind speed and direction in several places. At this moment the data are being collected at nine places. Due to lack of space, only four places will be addressed in this article.The Region of Douro and Alto Trás-os-Montes has an area of 12,235 km2. It is located in the Northeast part of Portugal and represents 57.7% of the North Region.Other projects refer to this region as having great potential in the field of renewable energies. From the analysis of the collected data, it seems that wind energy in Marão and Alvão mountains is one of the most interesting renewable energies. 相似文献
13.
Turkey is one of the developing countries. The production of electricity in Turkey is basically focused on hydro-power and thermal-power. On the other hand, measurements show that Turkey has a reasonable wind potential but this potential was not being used for many years due to government policies which supported the use of petroleum, coal, and hydro power as energy sources. In recent years there is an increasing interest in using wind energy as one of the energy sources. This paper briefly introduces a study of the determination of wind power potential of Nurda
ı/Gaziantep district where is on the south of Turkey for future wind power generation projects. Evaluation of wind data; taken by Turkish Electrical Power Resources Development Administration at the foot of the mountain, Nurda
ı, shows that the district has a mean wind speed of 7.3 m/s at 10 m height and observed highest value wind speed is 23.3 m/s. Mean power density of the site is found as 222 W/m2 and the results suggest that the site encourages investors especially since the terrain is a grassy plain on the side of the mountain and the measurements are taken at 10 m height. 相似文献
14.
This paper addresses the annual energy storage requirements of small islanded electricity systems with wind and photovoltaic (PV) generation, using hourly demand and resource data for a range of locations in New Zealand. Normalised storage capacities with respect to annual demand for six locations with winter-peaking demand profiles were lower for wind generation than for PV generation, with an average PV:wind storage ratio of 1.768:1. For two summer-peaking demand profiles, normalised storage capacities were lower for PV generation, with storage ratios of 0.613:1 and 0.455:1. When the sensitivity of storage was modelled for winter-peaking demand profiles, average storage ratios were reduced. Hybrid wind/PV systems had lower storage capacity requirements than for wind generation alone for two locations. Peak power for storage charging was generally greater with PV generation than with wind generation, and peak charging power increased for the hybrid systems. The results are compared with those for country-scale electricity systems, and measures for minimising storage capacity are discussed. It is proposed that modelling of storage capacity requirements should be included in the design process at the earliest possible stage, and that new policy settings may be required to facilitate a transition to energy storage in fully renewable electricity systems. 相似文献
15.
This paper is focused on a new methodology for the global assessment of wind power potential. Most of the previous works on the global assessment of the technological potential of wind power have used bottom-up methodologies (e.g. 2, 4 and 31). Economic, ecological and other assessments have been developed, based on these technological capacities. However, this paper tries to show that the reported regional and global technological potential are flawed because they do not conserve the energetic balance on Earth, violating the first principle of energy conservation (Gans et al., 2010). We propose a top–down approach, such as that in Miller et al. (2010), to evaluate the physical–geographical potential and, for the first time, to evaluate the global technological wind power potential, while acknowledging energy conservation. The results give roughly 1 TW for the top limit of the future electrical potential of wind energy. This value is much lower than previous estimates and even lower than economic and realizable potentials published for the mid-century (e.g. 8, 10 and 52). 相似文献
16.
《Renewable & Sustainable Energy Reviews》2008,12(6):1745-1757
In India, the wind power generation has gained a high level of attention and acceptability compared to other renewable energy technologies. New technological developments in wind power design have contributed for the significant advances in wind energy penetration and to get optimum power from available wind. The yearly percentage increase in wind energy installation is highest for India and now ranks fourth in the world with an installed capacity of 6018 MW. This paper reviews the development of wind energy in India and five potential Indian states. The future growth pattern and time period to achieve the technical wind potential are predicted and analysed. 相似文献
17.
A bottom-up Integrated Resource Planning model is used to examine the economic potential of renewable energy in Vietnam's power sector. In a baseline scenario without renewables, coal provides 44% of electricity generated from 2010 to 2030. The use of renewables could reduce that figure to 39%, as well as decrease the sector's cumulative emission of CO2 by 8%, SO2 by 3%, and NOx by 4%. In addition, renewables could avoid installing 4.4 GW in fossil fuel generating capacity, conserve domestic coal, decrease coal and gases imports, improving energy independence and security. Wind could become cost-competitive assuming high but plausible on fossil fuel prices, if the cost of the technology falls to 900 US$/kW. 相似文献
18.
Michael J. Grubb 《Energy Policy》1988,16(6):594-607
This paper discusses the prospects for the large-scale use of wind power for electricity supply in Britain. Recent economic advances in wind energy are outlined, and it is shown that on windy sites, currently-available machines are among the cheapest generating options. The results from detailed studies of wind energy resources, and of the long-term integration of wind power on the UK supply system, are then summarized. These studies are applied together in probabilistic projections of wind energy and power system costs. Results suggest that, siting permitting, the economic long-term contribution of wind energy in Britain is likely to lie in the range of 20–50% of system demand. The most critical questions for wind development now relate to institutional issues and the desirability of the source on such scales. 相似文献
19.
The Optimal Renewable Energy Model (OREM) has been developed to determine the optimum level of renewable energy sources utilisation in India for the year 2020–21. The model aims at minimising costefficiency ratio and determines the optimum allocation of different renewable energy sources for various end-uses. The extent of social acceptance level, potential limit, demand and reliability will decide the renewable energy distribution pattern and are hence used as constraints in the model. In this paper, the performance and reliability of wind energy system and its effects on OREM model has been analysed. The demonstration windfarm (4 MW) which is situated in Muppandal, a village in the southern part of India, has been selected for the study. The windfarm has 20 wind turbine machines of 200 KW capacity. The average technical availability, real availability and capacity factor have been analysed from 1991 to 1995 and they are found to be 94.1%, 76.4% and 25.5% respectively. The reliability factor of wind energy system is found to be 0.5 at 10,000 hours. The OREM model is analysed considering the above said factors for wind energy system, solar energy system and biomass energy systems. The model selects wind energy for pumping end-use to an extent of 0.3153×1015 KJ. 相似文献
20.
A transition to a renewable energy system is high on the policy agenda in many countries. A promising energy source for a low-carbon energy future is wind. Policy-makers can attract wind energy development by providing attractive policy frameworks. This paper argues that apart from the level of financial support, both the risks stemming from the regulatory environment (legal security, administrative process and grid access) and the ability to finance projects play a critical role in determining the attractiveness of the development environment. It sheds light on how project developers trade off these different aspects and to what extent the attractiveness of a certain policy framework increases with the introduction of specific measures. Conjoint analysis is employed to provide empirical evidence on the preference of wind energy developers in the EU and the US. The analysis shows that developers' preferences are very similar across the studied regions and for different types of developers. Which policy measures could be most valuable depends on the specific existing environment. In some southeastern European countries, a reduction of administrative process duration may yield the highest utility gains, whereas, in the US, improvements in grid access regulation and an increase in remuneration levels may be more effective. 相似文献