首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-frequency induction is an efficient way to heat mold surface by non-contact electromagnetic induction. It has been recently applied to injection molding because of its capability to heat and cool mold surface rapidly. This study applies high-frequency induction heating to eliminate weldlines in an injection-molded plastic part. To eliminate or reduce weldlines, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. Through 3 s of induction heating, the maximum temperature of 143 °C is obtained on the mold surface around the elliptic coil, while the temperature of the mold plate is lower than 60 °C. An injection molding experiment is then performed with the aid of induction heating, and the effect of induction heating conditions on the surface appearance of the weldline is investigated. The weldline on the heated region is almost eliminated, from which we can obtain the good surface appearance of the part.  相似文献   

2.
Using elevated mold temperature is known to have a positive influence of final injection molded parts. Induction heating is a method that allow obtaining a rapid thermal cycle, so the overall molding cycle time is not increased. In the present research work, an integrated multi-turn induction heating coil has been developed and assembled into an injection molding tool provided with a glass window, so the effect of induction heating can directly be captured by a high speed camera. In addition, thermocouples and pressure sensors are also installed, and together with the high speed videos, comparison of the induction heating and filling of the cavity is compared and validated with simulations. Two polymer materials ABS and HVPC were utilized during the injection molding experiments carried out in this work. A nonlinear electromagnetic model was employed to establish an effective linear magnetic permeability. The three-dimensional transient thermal field of the mold cavity was then calculated and compared with the experiments. This thermal field was transferred to an injection molding flow solver to compare simulations and experimental results from the high speed video, both with and without the effect of induction heating. A rapid thermal cycle was proved to be feasible in a mold with an integrated induction coil. Furthermore, it was shown that the process can be modeled with good accuracy, both in terms of the thermal field and of the flow pattern.  相似文献   

3.
Rapid heat cycle molding technology developed recently is a novel polymer injection molding process. In this study, a new water-assisted rapid heat cycle molding (WRHCM) mold used for producing a large-size air-conditioning plastic panel was investigated. Aiming at improving heating efficiency and temperature distribution uniformity of the mold cavity surface, a two-stage optimization approach was proposed to determine the optimal design parameters of medium channels for the WRHCM mold. First of all, the non-dominated sorting genetic algorithm-II (NSGA-II) combined with surrogate models was employed to search the Pareto-optimal solutions. Subsequently, the Technique for Order Preference by Similarity to Ideal Solution was adopted as a multi-attribute decision-making method to determine the best compromise solution from the Pareto set. Then, the layout of the medium channels for this air-conditioning panel WRHCM mold was optimized based on the developed optimization method. It was indicated that the heating efficiency and temperature distribution uniformity on the mold cavity surface were greatly improved by using the optimal design results. Furthermore, the effectiveness of the optimization method proposed in this study was validated by an industrial application.  相似文献   

4.
Functional parts are needed for design verification testing, field trials, customer evaluation, and production planning. By eliminating multiple steps, the creation of the injection mold directly by a rapid prototyping (RP) process holds the best promise of reducing the time and cost needed to mold low-volume quantities of parts. The potential of this integration of injection molding with RP has been demonstrated many times. What is missing is the fundamental understanding of how the modifications to the mold material and RP manufacturing process impact both the mold design and the injection molding process. In addition, numerical simulation techniques have now become helpful tools of mold designers and process engineers for traditional injection molding. But all current simulation packages for conventional injection molding are no longer applicable to this new type of injection molds, mainly because the property of the mold material changes greatly. In this paper, an integrated approach to accomplish a numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. Comparisons with experimental results are employed for verification, which show that the present scheme is well suited to handle RP fabricated stereolithography (SL) molds.  相似文献   

5.
采用微细电火花技术铣削加工了细胞皿模具型腔,以聚丙烯(PP)为例进行了成形工艺数值模拟分析,结果表明,注射速率、模具温度、熔体温度对充模过程影响较大,模具温度需要达到120℃型腔才能充满。提出了油水电相结合的变模温技术,变模温实验结果表明,型腔温度从80℃变化到120℃大约需要6min。填充实验表明,油水电相结合的变模温技术对实现微注塑模具成形过程的变模温是可行的。  相似文献   

6.
Glass molding is as an effective approach to produce precision micro optical elements with complex shapes at high production efficiency. Since glass is deformed at a high temperature where the mechanical and optical properties depend strongly on temperature, modeling the heat transfer and high-temperature deformation behavior of glass is an important issue. In this paper, a two-step pressing process is proposed according to the non-linear thermal expansion characteristics of glass. Heat transfer phenomenon was modeled by considering the temperature dependence of specific heat and thermal conductivity of glass. Viscosity of glass near the softening point was measured by uniaxially pressing cylindrical glass preforms between a pair of flat molds using an ultraprecision glass molding machine. Based on the numerical models and experimentally measured glass property, thermo-mechanical finite element method simulation of temperature rise during heating and material flow during pressing was carried out. The minimum heating time and pressing load changes were successfully predicted.  相似文献   

7.
Rapid heating cycle molding (RHCM) is a novel plastic injection molding process. It can be used effectively to prevent many defects of products produced in conventional injection molding process. In this paper, the panel of large-size liquid crystal display TV was taken as an example. Thermal, deformation, and fatigue analysis models for RHCM injection mold were established. Firstly, by analyzing the heat transfer process of the RHCM mold, the temperature distributions on the mold cavity surface were studied. Secondly, through numerical simulation, the tendency of the stress and deformation of the RHCM mold was obtained. It showed that the fixing mode between the stationary mold insert and the stationary mold plate had a great influence on the thermal stress and deformation of the mold. As a result, a new fixing mode for the stationary mold insert was proposed which could effectively decrease the deformation caused by the temperature changing. Lastly, the lifetime of the mold under different fixing modes was evaluated, and reasonable suggestions which could improve the lifetime of RHCM mold were also proposed. Application in engineering proved that it was a very effective way to improve the lifetime of RHCM mold by using the suggested fixing mode.  相似文献   

8.
针对微结构聚合物元器件的批量化生产与制造效率低等问题,采用精密修整成V形尖端的金刚石砂轮,在自润滑性和脱模性良好的钛硅碳陶瓷模芯表面加工制造出形状精度可控的V沟槽阵列结构,然后利用微注塑成形工艺将模芯表面的V沟槽阵列结构一次成形复制到聚合物表面,高效注塑成形制造出倒V形阵列结构的聚合物工件。分析了微模芯的表面加工质量与形状精度,研究了熔体温度、注射速度、保压压力、保压时间等微注塑成形工艺参数对微结构聚合物注塑成形角度偏差和填充率的影响。实验结果表明:通过微细磨削加工技术和微注塑成形工艺可以高效率、高精度地制造出规则整齐的微结构注塑工件,注射速度对微成形角度偏差的影响最大,保压压力对微成形填充率的影响最大,微结构模芯的微细磨削形状精度值为4.05 μm,微成形的最小角度偏差和最大填充率分别为1.47°和99.30%。  相似文献   

9.
针对沉船水下抽油过程中重油加热的需求,提出一种基于电磁感应原理利用油舱外板加热重油的方法,根据电磁理论及热传导理论建立了加热过程的数学模型,使用有限元软件进行数值模拟,得出重油加热过程温度衰减规律,利用油舱模型进行重油加热模拟实验,测量油舱加热过程重油温度变化及衰减规律。通过模型进行重油水下电磁加热的验证可知,实验结果与数值仿真重油加热温度变化规律有良好的匹配性。该电磁加热重油技术设备简单、加热效率较高,在防止沉船燃油泄漏领域具有较好的应用前景。  相似文献   

10.
针对快速变模温注塑成型模具热响应分析复杂问题,对电热式变模温注塑模具热响应作了研究,采用随形加热系统设计方法,将复杂的电热式变模温注塑模具简化为单个加热细胞单元,以电热元件的规格和布局为设计变量,以加热时间和型腔表面温差为热响应指标,结合Matlab图形界面开发模块和ANSYS有限元分析软件,开发了基于加热细胞单元的电热式变模温注塑模具热响应辅助分析程序,并对其准确性做了验证分析。研究结果表明,该辅助分析程序可以较好地预测模具的加热效率和型腔表面温度均匀性,可为电热式变模温注塑模具的设计、分析一体化提供一条快捷和高效的途径。  相似文献   

11.
MoldflowXpress可根据零件的几何形状、材料、浇注位置进行模拟注射而得出分析结果,演示零件在模具型腔内能否完全填充,智能化地提供塑料零件注射模具制造可行性的建议。这一功能可以使用户通过逼真的动态模拟分析直观了解塑料注入模腔时的流动情况,合理选择模具的注塑位置和塑件的壁厚,优化模具设计及注塑条件的参数设置,提高生产效率,降低零件生产成本。  相似文献   

12.
Mold design is a knowledge-intensive process. This paper describes a knowledge-based oriented, parametric, modular and feature-based integrated computer-aided design/computer-aided engineering (CAD/CAE) system for mold design. Development of CAx systems for numerical simulation of plastic injection molding and mold design has opened new possibilities of product analysis during the mold design. The proposed system integrates Pro/ENGINEER system with the specially developed module for the calculation of injection molding parameters, mold design, and selection of mold elements. The system interface uses parametric and CAD/CAE feature-based database to streamline the process of design, editing, and reviewing. Also presented are general structure and part of output results from the proposed CAD/CAE-integrated injection mold design system.  相似文献   

13.

Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  相似文献   

14.
为进一步提高聚合物复合材料热导率,采用多尺度数值预测法研究了微注塑聚酰胺/碳纤维(PA66/CFs)散热器内部CF的流动诱导取向及其对制品热导率的影响规律。首先,利用Moldflow获取CF取向张量,并以Comsol Multiphysics构建与之对应的复合材料微元胞。利用正交实验法研究熔体温度、模具温度、最大注射压力及注射流率对微散热器热导率的影响。然后,对预测数据进行分析获得最优注塑参数组合。最后,对优化结果进行模拟实验,验证了多尺度数值预测法的有效性。结果显示:上述各参数重要程度由大到小依次排列为熔体温度、注射流率、最大注射压力和模具温度;最佳组合为熔体温度360℃、模具温度70℃、最大注射压力220 MPa及注射流率3×10–4 cm3/s。另外,流动诱导热导率变化最大值达0.36 W/(m·K),为基体热导率的1.5倍。得到的研究结果为从工艺调控的新角度来改善聚合物复合材料的导热性能提供了理论依据与数据支撑。  相似文献   

15.
Cooling system has an important role in the injection molding process in terms of not only productivity and quality, but also mold-making cost. In this paper, a conformal cooling channel with an array of baffles is proposed for obtaining uniform cooling over the entire free-form surface of molded parts. A new algorithm for calculating temperature distribution through molding thickness, mold surface temperature and cooling time was presented. The relation among cooling channels’ configuration, process parameters, mold material, molding thickness and temperature distribution in the mold for a given polymer is expressed by a system of approximate equations. This relation was established by the design of experiment and response surface methodology based on an adequate physical-mathematical model, finite difference method and numerical simulation. By applying this approximate mathematical relation, the optimization process for obtaining target mold temperature, uniform temperature distribution and minimizing the cooling time becomes more effective. Two case studies were carried out to test and validate the proposed method. The results show that present approach improves the cooling performance and facilitates the mold design process in comparison to the trial-and-error simulation-based method.  相似文献   

16.
复杂曲面注塑产品模型集成分析技术   总被引:1,自引:0,他引:1  
基于Hele—Shaw流动模型,研究了具有复杂曲面特征的注塑产品模型集成分析的技术方法,给出了在建立曲面型产品CAD特征实体模型时,考虑产品在结构上的可分析性,并按照该产品CAD几何形状的厚度分布对CAE网格单元模型附加其厚度属性信息的技术构架和实施方法。通过对影响注塑产品型腔充模流动过程的重要参数——流动率与cAE网格单元模型关系的研究,用数值仿真方法对两型腔钟表前后壳体注塑产品进行了CAE分析,其结果接近试验过程,从而验证了模型集成方法的有效性和准确性。  相似文献   

17.
对塑料注射成形流动、保压和冷却过程中热传递行为进行计算机模拟,通过迭代求解耦合参数单元的温度值、实现注民形流动、保压和冷却全过程的耦合迭代分析。  相似文献   

18.
This work studies the injection molding characteristics of polymer micro- and sub-micron structures using demonstration mold inserts with micro- and sub-micron channels with high-aspect ratios. The effects of the injection molding parameters on the achievable aspect ratio of the micro- and sub-micron walls were investigated. Additionally, distinctive mold-filling behaviors and resulting defects were observed for various polymers, such as polymethyl methacrylate (PMMA), polypropylene (PP) and high-density polyethylene (HDPE). Experimental results reveal that the mold temperature determines the success of the injection molding of micro- and sub-micron walls. The satisfactory mold temperature for micro-injection molding significantly exceeds that for traditional injection molding. Moreover, the main injection pressure and the main injection time substantially affect the achievable aspect ratio of the micro- and sub-micron walls. Furthermore, unusual flow behaviors occur and poor molding results are obtained when PP and HDPE are used for micro-injection molding.  相似文献   

19.
The friction force developed in the demolding phase of the micro injection molding process is mainly determined by mold surface finish, which affects the tribological phenomena occurring at the polymer–tool interface. In this work, the effects on the ejection force of two cavity surfaces machined with different technologies (viz. micro milling and micro electro discharge machining), but with similar value of Ra, were investigated. The relations between different surface topography parameters and the ejection force were then analyzed, in order to identify the parameters that most appropriately describe the friction at the polymer–tool interface. The experimental results showed the strong interactions between the mold surface texture and the micro injection molding process parameters that promote the replication, such as mold temperature and holding pressure. The different machining technologies generated two mold textures that have a similar value of Ra, but their influence on friction can be properly described only using several other surface topography parameters.  相似文献   

20.

The profile of a bi-aspheric lens is such a way that the thickness narrows down from center to periphery (convex). Injection molding of these profiles has high shrinkage in localized areas, which results in internal voids or sink marks when the part gets cool down to room temperature. This paper deals with the influence of injection molding process parameters such as mold surface temperature, melt temperature, injection time, V/P Switch over by percentage volume filled, packing pressure, and packing duration on the volumetric shrinkage and deflection. The optimal molding parameters for minimum variation in volumetric shrinkage and deflection of bi-aspheric lens have been determined with the application of computer numerical simulation integrated with optimization. The real experimental work carried out with optimal molding parameters and found to have a shallow and steep surface profile accuracy of 0.14 and 1.57 mm, 21.38-45.66 and 12.28-26.90 μm, 41.56-157.33 and 41.56-157.33 nm towards Radii of curvatures (RoC), surface roughness (Ra) and waviness of the surface profiles (profile error Pt), respectively.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号