首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
直觉模糊C-均值聚类算法研究   总被引:2,自引:0,他引:2  
鉴于直觉模糊集理论作为模糊理论的推广已得到广泛的应用,研究了将模糊C-均值聚类推广为直觉模糊C-均值聚类(IFCM)的途径和方法,分析了现有的几种IFCM算法,并提出了一种基于直觉模糊集的模糊C-均值聚类算法.该算法首先定义了直觉模糊集之间的距离;然后构造了聚类的目标函数;最后给出了聚类算法步骤.将算法用于目标识别,实验结果表明了算法的有效性.  相似文献   

2.
模糊C-均值聚类算法的改进   总被引:1,自引:0,他引:1  
针对传统的模糊C-均值算法FCM受初始聚类中心影响而易于收敛到局部极小值的问题,提出了具体的改进方法.初始聚类中心不再随机获取而是通过改进的算法有目的地进行选取,同时采用冗余聚类中心的方法先将大簇分割成多个小类,再按一定条件将相邻的小类合并.实验结果表明,改进后的FCM算法减小了对初始聚类中心的依赖,聚类结果更加精确.  相似文献   

3.
改进的模糊C-均值聚类算法研究   总被引:10,自引:1,他引:9       下载免费PDF全文
为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作用,改善噪音和分布不均衡的样本集的聚类结果。实验结果表明该算法具有更好的健壮性和聚类效果。  相似文献   

4.
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。  相似文献   

5.
基于遗传算法和遗传模糊聚类的混合聚类算法   总被引:2,自引:1,他引:2  
张强  李淼 《计算机工程与应用》2007,43(3):164-165,197
为了动态确定聚类数目C和该数目下的最优分类,构造出遗传算法和模糊遗传C均值聚类的混合聚类算法(HGA-FGCM),该方法构造了一个既考虑类与类之间的分散程度,又考虑同一类紧凑程度的目标评价函数;运用遗传算法的全局寻优能力,求得最佳聚类数下的最优聚类。  相似文献   

6.
在综合分析标准的模糊C-均值聚类算法和条件模糊C-均值聚类算法基础上,对模糊划分空间进行修改,进一步弱化模糊划分矩阵的约束,给出一种扩展的条件模糊C-均值聚类算法。算法的划分矩阵和原型不依赖于背景约束及模糊划分矩阵的隶属度总和。实验结果表明:该算法可以得到不同的聚类原型,并具有很好的聚类效果。  相似文献   

7.
针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观因素,获得比较符合用户需求的聚类结果,并能在原有聚类结果的基础上简单有效地处理更新数据,过滤噪声数据,较好地避免大量重复计算。  相似文献   

8.
基于免疫遗传算法的模糊C-均值聚类   总被引:1,自引:1,他引:1       下载免费PDF全文
为了克服FCM算法对初值的敏感性,提出了一种基于免疫遗传算法的FCM算法。该算法利用免疫系统原理和遗传算子自适应调整的方法(即免疫遗传算法)来改进FCM算法。实验证明该算法能有效解决未成熟收敛的问题,保证了种群的多样性,使聚类问题最终快速、有效地收敛到全局最优解。  相似文献   

9.
改进的模糊C-均值聚类算法   总被引:2,自引:1,他引:2       下载免费PDF全文
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。  相似文献   

10.
新的混合模糊C-均值聚类算法   总被引:1,自引:1,他引:1  
基于量子行为的粒子群算法(QPSO)是一种改进的粒子群优化算法.它使用的参数个数少,在解的收敛性和全局搜索能力上优于基本的粒子群算法(PSO).将QPSO算法与模糊C-均值(FCM)算法相结合提出一种新的混合模糊C-均值聚类算法(QPSO-FCM),新算法代替了FCM算法的基于梯度下降的迭代过程,在一定程度上克服了FCM算法易陷入局部极小的缺陷,降低了FCM算法的初值敏感度.实验结果表明,改进后的新算法与FCM算法和PSO与FCM结合算法相比,具有良好的收敛性,聚类效果也有较好的改善.  相似文献   

11.
基于机群的求解TSP问题的分布式演化算法   总被引:4,自引:0,他引:4  
讨论一种基于PC机群的术解TSP问题的分布式演化算法.在PVM环境下进行了数值实验,结果表明该算法在一定的扩展范围内可以得到接近线性加速比的性能.  相似文献   

12.
研究了组织这个经济学中的概念在求解优化问题时的可能应用,给出了一种基于组织调整的进化算法EAOA(EvolutionaryAlgorithmBasedonOrganizationAdjustment)。结合TSP问题,对算法进行了测试,得到了与现有文献结果相同或更好的解,表明该算法具有较强的问题求解能力。  相似文献   

13.
为了更深入的对模糊C-均值聚类算法进行研究,从提高算法的收敛速度角度着手,总结归纳了以RCFCM、S-FCM、PIM和FCMα等算法为代表的隶属度修正类模糊C-均值聚类算法,跟踪阐述了其研究进展.为了展现算法的全貌,从不同参数和不同模糊指数等角度实验分析了各算法的性质和特点.根据实验分析结果,为其后续研究指明了方向.上述工作将为FCM算法的进一步研究提供有益的参考.  相似文献   

14.
信息时代的到来和互联网的发展,使信息文本呈爆炸趋势生成和传播,虚假信息的大量存在,给人们高效地获取可信的、安全的信息带来了相当的困难.如何对互联网上的信息文本进行信任评估,是内容信任和网络安全急待解决的问题.借鉴传统的自动摘要技术,首先提出了信任文摘的概念,在文本的词、句子、篇章等各个层面上发掘信任信息,改进自动分词方法,选取信任中心句并运用改进的模糊C均值聚类算法对其聚类,然后为信任中心句选择信任支撑句,最后生成了信任文摘,为基于内容的信任评估提供了一个较好的手段.  相似文献   

15.
基于模糊C-均值聚类算法的入侵检测   总被引:2,自引:0,他引:2  
聚类分析是一种有效的异常入侵检测方法,可用以在网络数据集中区分正常流量和异常流量.文中采用模糊C-均值聚类算法对网络流量样本集进行划分,从中区分正常流量和异常流量,并针对入侵检测问题的特性提出了新的相似性度量方法.最后,利用KDD99数据集进行实验,证明该算法能够有效地发现异常流量.  相似文献   

16.
针对现有环境感知推荐算法存在的不足,提出一种基于模糊C均值聚类的环境感知推荐算法.首先采用模糊C均值聚类算法对历史环境信息进行聚类,产生聚类及隶属矩阵;然后匹配活动用户环境信息与历史环境信息聚类,采用聚类隶属度作为映射系数将符合条件的非隶属数据映射为隶属数据,最终选择与活动环境匹配的隶属用户评分数据为用户产生推荐.同现有算法相比,该算法不仅解决了因用户环境改变不能准确推荐项目的问题,而且通过采用模糊聚类算法克服了传统硬聚类问题,并且借助于隶属映射函数解决了聚类产生的数据稀疏性问题.在MovieLens数据集上比较了新算法和其他算法的性能,验证了所提算法的有效性.  相似文献   

17.
针对现有环境感知推荐算法存在的不足,提出一种基于模糊C均值聚类的环境感知推荐算法.首先采用模糊C均值聚类算法对历史环境信息进行聚类,产生聚类及隶属矩阵;然后匹配活动用户环境信息与历史环境信息聚类,采用聚类隶属度作为映射系数将符合条件的非隶属数据映射为隶属数据,最终选择与活动环境匹配的隶属用户评分数据为用户产生推荐.同现有算法相比,该算法不仅解决了因用户环境改变不能准确推荐项目的问题,而且通过采用模糊聚类算法克服了传统硬聚类问题,并且借助于隶属映射函数解决了聚类产生的数据稀疏性问题.在MovieLens数据集上比较了新算法和其他算法的性能,验证了所提算法的有效性.  相似文献   

18.
针对相对复杂图像目标对象的提取问题,本文先运用模糊C均值聚类算法(FCM)对图像进行模糊分割。再根据模糊分类后的图像,本文设计了一种图像目标提取方法。实验表明,这种方法能还原模糊分类后的图像目标,并使背景部分替换成其他颜色,从而实现图像目标的提取。  相似文献   

19.
基于遗传算法求解TSP问题的一种新方法   总被引:3,自引:0,他引:3  
针对基于遗传算法求解TSP的效率问题,提出了一种基于位操作编码技术,并给出了基于位操作的交配、变异等基本操作的实现方法,有效地提高了计算过程中的空间利用率和计算效率。  相似文献   

20.
提出一种基于矩阵加权关联规则的区间模糊C均值聚类算法。根据支持度和可信度对矩阵构造关联规则,在关联规则的基础上进行区间模糊C均值聚类。由样本数量的大小来调整区间的影响因子a以达到最优聚类。该算法在解决小型文本时精度优于传统算法(如k-means),在解决多维数据时效率较理想。理论和实验表明,该算法可以在一定程度上提高聚类结果的质量和算法效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号