首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new double interlayer W/Al was developed for chemical vapor deposition (CVD) of diamond coatings on cemented WC-Co cutting tools to enhance diamond nucleation and adhesion. A thin layer of Al directly deposited on WC-Co is used to suppress the interfacial graphitization induced by Co and an additional thin layer of W is used to enhance diamond nucleation. The microstructure and adhesion of diamond coatings grown on the W/Al/WC-Co and, for comparison, on W/WC-Co as well as bare WC-Co were investigated. The results demonstrate that diamond coatings grown on W/Al are continuous and well adhesive. The advantage of the interlayer includes that nano-crystalline diamond can be achieved even under typical microcrystalline diamond growth conditions. In addition, the W/Al interlayer of overall 50–65 nm thickness would cause marginal lost of cutting edge sharpness and mechanical integrity of coated cutting tools.  相似文献   

2.
Aluminum alloy 7075 is widely used for producing micro-scale heat sinks, micro-fluidic devices, micro-propellers and so on. This paper deals with optimizing microstructure and thickness of diamond coatings on microdrills used in 7075 aluminum alloy machining. Firstly, the friction tests between microcrystalline diamond (MCD), nanocrystalline diamond (NCD) films and aluminum alloy reveal that the stable coefficient of friction (COF) of MCD–aluminum alloy working pair is 0.240, much higher than that of NCD–aluminum alloy working pair (0.072). The decrease of COF is mainly attributed to the lower roughness of NCD films and the presence of more graphite or the non-diamond phases in NCD coatings. Afterwards, comparative cutting tests involving MCD, NCD, diamond-like coating (DLC) and TiAlN coated microdrills show that after drilling 200 holes, NCD coated microdrills exhibit the best cutting performance. Furthermore, NCD coated microdrills with coating thicknesses of 1 μm, 2 μm, 4.5 μm and 7 μm are fabricated and their cutting performance is studied in aluminum alloy machining. The cutting experiments show that the NCD coated microdrill with coating thickness of 4.5 μm shows the best cutting performance, exhibiting not only lowest flank wear and no tool tipping or chipping on the main cutting edges but also the highest quality of drilled holes because of the outstanding adhesive strength and wear resistance of the NCD coating.  相似文献   

3.
Interfacial adhesion characteristics of nanocrystalline and microcrystalline diamond coatings deposited on tungsten carbide (WC–Co) substrates were studied and analysed using a scratch tester. Coating failure events and critical point loads were identified by acoustic emission, tangential force measurement and image analysis carried out on the scratch track. In this respect, enhanced scratch resistance properties were observed in microcrystalline diamond (MCD) coating in comparison to nanocrystalline diamond (NCD) coating. Significant difference in critical loads for adhesive failure was observed for MCD and NCD coatings. These loads were 42 N and 20 N for MCD and NCD coatings, respectively. The reason for these two distinctly different adhesive characteristics was attributed to the microstructure of the respective coatings. The surface morphologies at critical failure point and wedge spallation regions of the scratch tracks were completely different for NCD and MCD coatings. Critical point regions were analysed by Raman stress mapping to study the scratch induced residual stresses in the strained diamond flakes and deformed coating of the scratch track. In this respect, high tensile stresses were observed in the regions of critical failure. This behaviour is strongly dependent on magnitude of stress and nature of deformation during the scratch test of NCD and MCD coatings.  相似文献   

4.
At present, diamond coating is usually deposited on cemented carbide (WC-Co) tool with low Co content (Co  6 wt.%). It is more difficult to deposit diamond coating on WC-Co with high Co content because of the strong catalytic effect of Co. However, WC-Co tools with high Co content (Co  6 wt.%) are more widely used in difficult-to-cut materials machining because of their higher strength and better ductility. In this paper, the research was carried out on the adhesion performance of diamond coating on WC-Co (Co 10 wt.%). The deposition of diamond coating was conducted in hot filament chemical vapor deposition (HFCVD) system with the presence of the strong carbon-forming metallic interlayer (Nb, Cr or Ta), which was prepared using physical vapor deposition (PVD) on WC-Co substrate after chemical etching through a two-step process (Murakami solution and Caro's acid), which is a general way to treat the WC-Co substrate before growth of diamond coating. The results showed that the diamond films grown on the above treated WC-Co substrate have higher nucleation density, purity and adhesion strength than those on WC-Co substrates pretreated only using PVD interlayer or chemical etching. The PVD interlayer restrains the diffusion of Co as a result of high substrate temperature during the diamond film deposition, and consequently prevents the formation of the loosened layer induced by the removal of Co binder phase in the WC-Co substrate. The results also indicated that Nb interlayer leads to the most adhesion improvement of diamond films on the WC-Co inserts among the Nb, Ta and Cr interlayers.  相似文献   

5.
We show that thin diamond coatings can dramatically enhance the performance of micrometer-scale cutting tools. We present a new approach for coating 300 μm diameter tungsten carbide (WC) micro end mills using a tailored seeding method and hot filament chemical vapor deposition (HFCVD) to obtain uniform, conformal, and continuous diamond coatings less than 2 μm in both thickness and grain size. The performance of the uncoated and coated tools has been evaluated by dry machining channels in 6061-T6 aluminum. The test results demonstrate far lower tool wear and breakage, much lower adhesion of aluminum to the tool, and significantly lower cutting forces for the coated tools. The coatings achieve a more predictable surface finish and enable dry machining at high speeds (40,000 rpm) with little or no burr formation. The improved performance of the coated tools is a result of the superior tribological properties of fine-grained diamond against aluminum, specifically low friction, low adhesion, and low wear of the film. Since the coating allows machining without lubricants and essentially eliminates metal burrs, this approach can reduce the environmental impact of micro-machining processes and offers greatly improved performance for micro and meso-scale manufacturing applications.  相似文献   

6.
CrN/Cr-based films were deposited using PVD-arc technique onto Co-cemented tungsten carbide (WC-Co) substrates and, then, seeded with diamond powder suspension or mechanically treated by Fluidized Bed Peening (FBP) of brittle diamond powders. Multilayered coatings were obtained from the superimposition of 4 µm-thick diamond coatings, deposited on the PVD interlayer using hot filament chemical vapour deposition (HFCVD). The effectiveness of fluidized bed peened CrN/Cr interlayers on the adhesion enhancement of diamond on WC-Co substrates was studied and compared to diamond coated WC-Co substrates with unpeened CrN/Cr or CrN interlayers, or pre-treated with two-step chemical etching (Murakami's reagent and Caro's acid, MC-treatment).In particular, growth, morphology, wear endurance and adhesion of the CVD deposited diamond films onto peened CrN/Cr interlayer were looked into. Diamond coatings on peened CrN/Cr interlayers exhibited a rougher surface morphology than as-prepared CrN/Cr films as a result of the surface roughening of the ductile Cr layer produced by the repeated impacts on it of the diamond powders during FBP. FBP was found to be a necessary step in improving the scarce adhesion of CVD diamond onto CrN/Cr-interlayer.However, the use of FB peened CrN/Cr interlayer did not represent the best way to pre-treat WC-Co substrates, as the unpeened single-layer CrN, or the use of MC pretreatment, was found to ensure better adhesion and wear endurance.  相似文献   

7.
Adherent diamond coatings on steel and copper were obtained by using a titanium interlayer. The adhesion of the coatings was evaluated by scratch tests and micro-indentation tests. The diamond coating on steel exhibited a much higher critical load than on copper, as revealed by the scratch tests. However, an observation on the back of the scratch-delaminated film and on the corresponding substrate surface showed that the detachment occurred between the diamond film and the titanium interlayer. Therefore, the difference in the critical scratch load is due mainly to a substrate effect, making it difficult to compare the adhesion of different coatings.On the other hand, Knoop indentation tests showed interesting results: a small indentation load causes round spallation in the film with no observable crack. An exponential sink-in deformation under the indentation is proposed, y=−a exp(−bx). The coating adhesion is considered to be equivalent to the deformation stress at the edge of the spallation zone. The adhesion of diamond coatings on steel and copper with a titanium interlayer is evaluated quantitatively using this model. Furthermore, a thermal quench method is proposed to estimate the coating adhesion. The results found are in agreement with the indentation model.  相似文献   

8.
The adhesion strength and deposition behavior of diamond films with different grain size onto heat-treated WC–Co cutting tool inserts were investigated. The diamond film was deposited on WC–6%Co cutting tool inserts by the hot-filament chemical vapor deposition method, with H2/3% CH4 mixed gas. The N2 gas was incorporated in the mixed gas to refine the grain size of the deposited diamond film (nanocrystalline diamond: NCD).Pores were observed in the interface region between the micrometer-size diamond film (MCD) and the WC–Co cutting tool insert. This suggested that the growth of diamond grains on top of elongated WC grains, which was induced by heat treatment to improve the adhesion strength of the deposited film, hindered the deposition of diamond in the valley area between the elongated WC grains. By contrast, in the case of the NCD film with a grain size of less than 50 nm obtained by addition of N2 gas, no pores were observed, due to the fact that the refined diamond grains filled the interface region regardless of the existence of the elongated WC grains. The adhesion strength of the NCD film was likely to be greater than that of the MCD film on the heat-treated WC–Co cutting tool insert, which was explained by the full coverage with small diamond grains at the rough interface region.  相似文献   

9.
Well-adhered microcrystalline diamond (MCD) coatings have been deposited on WC–Co substrates by the microwave plasma enhanced chemical vapor deposition (MPECVD) method. A multi-interlayer system Cr/CrN/Cr was deposited on the cemented carbide substrate before diamond deposition to act as a diffusion barrier. The interlayer-coated substrate was shortly peened by friable diamond powders with an average size of 150 μm to roughen the surface. Diamond coatings deposited on short peened substrates show higher nucleation density and stronger adhesion properties. The X-ray diffraction (XRD) pattern showed that an additional carbide compound layer (Cr3C2 and Cr7C3) was formed during the CVD diamond deposition to work as an intermediate bonding layer for better adhesion. Rockwell indentation tests with a load of 1470 N were conducted to investigate the coating's adhesion. No delamination outside of the indentation zone was observed for the diamond coating deposited on the roughened sample. Electron probe microanalysis (EPMA) results showed that the delamination in the indentation zone occurred mainly at the diamond/Cr interface and very little Co (less than 1 wt.%) was detected on the Cr failure surface. This suggests that during the CVD process Co/C inter-diffusion was successfully prevented by the Cr/CrN/Cr buffer layers.  相似文献   

10.
A surface engineering approach for a novel pretreatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firstly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pretreated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.  相似文献   

11.
Indentation tests combined with acoustic emission spectra were used to compare the adhesion of diamond films deposited on various substrates, including Ti, Cr, Si and Ti coated Cu. We show that indentation in the diamond coatings may cause the following failure modes: (a) the substrate cracking; (b) the film cracking and localised detachment; and (c) the film delamination and the delamination propagation. Acoustic emission during indentation loading provided essential information in predicting what mode of failure occurs. Combined with the acoustic emission spectra, the indentation tests are reliable in comparing the adhesion of diamond films deposited on the same or similar substrate materials. However, the comparison of the film adhesion on very different substrates, like Cu and Ti, is not so straightforward. Acoustic emission spectra also revealed that indentation caused substrate cracking prior to the failure of the film/substrate interface for diamond coatings on Si. In this case, the indentation tests are not valid to compare the coating adhesion.  相似文献   

12.
Thin silicon carbide (SiC) films were deposited from tetramethylsilane/hydrogen gas mixture on Co-cemented tungsten carbide (WC–Co) inserts by using Hot-Filament Chemical Vapour Deposition (HFCVD) technique. Grazing incidence X-Ray Diffraction (XRD) confirmed that the films were composed of cubic silicon carbide (β-SiC) and that small amounts of dicobalt silicide (Co2Si) were formed. These films were used as interlayers for subsequent CVD of diamond films. XRD and combined Scanning and Transmission Electron Microscopies showed that the binder phase reacted during CVD to form cobalt silicides. However, these intermetallic compounds did not have bad effects on diamond adhesion. Dry turning of graphite was chosen to check the multilayer (SiC + diamond) film performance. For the sake of comparison, machining tests were also carried out under identical conditions using commercial sintered diamond (PCD) inserts and WC–Co diamond coated inserts with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results showed that multilayer (SiC + diamond) coatings exhibited the longest tool lives. Therefore, thin SiC interlayers proved to be a new viable alternative and a suitable option for adherent diamond coatings on cemented carbide components and cutting tools.  相似文献   

13.
Cubic boron nitride (c-BN) is a well known material to be used in machining of ferrous metallic alloys, namely as a coating. However, in most practical cases, there is a lack of adhesion to the substrate material. In this work, BN coatings were deposited by magnetron sputtering on silicon nitride (Si3N4) ceramic substrates using an intermediate layer of CVD microcrystalline (MCD) or nanocrystalline diamond (NCD). The goal was to improve the c-BN content by using diamond interlayers, and to optimize film adhesion to the substrate by employing such ceramic, which is known to provide very high adhesion strength to CVD diamond. The BN/NCD/Si3N4 combination demonstrated to be unique regarding the absence of delamination at both the BN/diamond and diamond/substrate interfaces, also providing the highest c-BN phase content.  相似文献   

14.
Diamond film deposition onto WC-Co substrates exhibits several limitations regarding the final diamond quality in the film and its adhesion due to the chemical interaction between the Co in the substrate and the diamond CVD environment. In the present study, the use of a ~ 1.5 μm thermally nitrided Cr interlayer was examined as an effective diffusion barrier throughout the CVD process. Nitridation of the Cr PVD layer in NH3 environment resulted in the formation of a graded CrN/Cr2N layer comprised mainly of the CrN phase, accompanied with the formation of a porous ‘net-like’ microstructure at the surface. During both thermal nitridation and exposure to the CVD environment up to 360 min, the diffusion of C and Co from the substrate into the interlayer was limited to the region adjacent to the Cr–N interlayer/WC–Co substrate interface, which contained the Cr2N phase. In this region, the Co interacted with the Cr lattice to form a CoCr phase, which was suggested to enhance the chemical binding between the interlayer and the substrate. The region containing the CrN phase was suggested to act as an effective diffusion barrier due to its fully occupied interstitial sites and relatively high crystalline density compared to the underlying Cr2N phase. It was evident that the deleterious effects of Co during the CVD process were successfully suppressed using the Cr–N interlayer and the deposited diamond film exhibited improved adhesion and higher diamond quality.The formation of phases within the interlayer during nitridation and the diamond CVD process, and diamond quality evaluation in the deposited films were investigated by complementary techniques: SEM, XRD, XPS, SIMS and Raman spectroscopy.  相似文献   

15.
Diamond films were deposited on the cemented WC+(3–5)% Co substrates by a microwave plasma chemical vapor deposition system. The substrates were pretreated with various processing steps before diamond deposition, including: polishing, etching for Co removal, Ti coating by DC sputter, and amorphous Si coating by E-gun. The residual stress of the films was determined by both Raman shift and low incident beam angle X-ray diffraction (LIBAD) methods. The adhesion of the films was evaluated by indentation adhesion testing. The film morphology and film–substrate interface structure were examined by SEM and Auger electron spectroscopy, respectively. The results show that Ti–Si can be a good interlayer to improve film adhesion and inhibit diffusion of Co to the substrate surface on diamond nucleation. This is due to the formation of strong TiC and SiC bonding to enhance film adhesion; Si acts as a promoter for diamond nucleation, and the residual stress with application of interlayer is much lower than that interlayer-free. The results also show the existence of an optimum Ti thickness for the best film adhesion.  相似文献   

16.
In this paper, CVD diamond coatings are deposited on cemented carbides with 10 wt.% Co using amorphous SiO2 and amorphous SiC interlayers. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Raman spectrum and X-ray diffraction (XRD) are carried out to characterize the microstructure and composition of as-deposited films. Moreover, the adhesion and cutting performance of as-fabricated diamond coatings are studied. Indentation tests show that the amorphous ceramic interlayers can enhance the adhesion between diamond films and WC–Co substrates. The cutting tests against zirconia indicate that the tools with amorphous ceramic interlayered diamond coatings exhibit improved cutting performance. The amorphous ceramic interlayers can improve the adhesive strength and wear endurance of diamond coatings on WC–10 wt.% Co substrates, which provide a viable way for adherent diamond coatings on cemented carbide tools with high cobalt content.  相似文献   

17.
A key requirement of an effective coating is its adequate adhesion to the substrate. Thus, reliable test methods to evaluate coating adhesion and to characterize the deposition parameters affecting it are necessary for the systematic development of such coatings. The conventional technique for measuring diamond coating adhesion, the scratch test, is unreliable because of wear of the stylus and influences of the substrate. Thus, a noncontact technique (compression test) of evaluating the adhesion of diamond coatings on brittle substrates was modelled and developed. This method utilizes the differences in Young's modulus between the coating and the substrate via application of an external load in order to generate interfacial stresses and debond the coating. An innovative three-dimensional numerical model, based on combining the variational and boundary integral approaches, was utilized to link the indirect (i.e. load) to the direct (i.e. debond shear stress or elastic energy of delamination) characteristics of adhesion. Factors affecting the adhesion strength of the diamond coatings are discussed in relation to the process parameters. This test offers an excellent alternative to conventional techniques for measuring the adhesion strength of diamond coatings on brittle substrates.  相似文献   

18.
In this study, the microstructural, mechanical, adhesion, and hemocompatibility properties of nanocrystalline diamond coatings were examined. Microwave plasma chemical vapor deposition (MPCVD) was used to deposit nanocrystalline diamond coatings on silicon (100) substrates. The coating surface consisted of faceted nodules, which exhibited a relatively wide size distribution and an average size of 60 nm. High-resolution transmission electron microscopy demonstrated that these crystals were made up of 2–4 nm rectangular crystallites. Raman spectroscopy and electron diffraction revealed that the coating contained both crystalline and amorphous phases. The microscratch adhesion study demonstrated good adhesion between the coating and the underlying substrate. Scanning electron microscopy and energy dispersive X-ray analysis revealed no crystal, fibrin, protein, or platelet aggregation on the surface of the platelet rich plasma-exposed nanocrystalline diamond coating. This study suggests that nanocrystalline diamond is a promising coating for use in cardiovascular medical devices.  相似文献   

19.
A new composite matrix was developed for a cutting tool based on tungsten carbide ligated with cobalt (WC-Co) using sintering technique. The admixtures of niobium carbide, tantalum carbide, and titanium carbide with the WC-Co matrix aim to inhibit the grain growth of WC and to promote covalent bonding at the interface. The modified WC-Co tools were coated with titanium nitride and titanium carbonitride layers by CAE-PVD technique. To substantiate the performances of the new coating-substrate systems, we have performed X-ray diffraction, atomic force microscopy, and scratch test measurements to estimate: phase content, average crystallite size, average texture coefficient, residual stress level, coating thickness, average roughness, square mean root, fractal dimension, cohesive adhesion, and adhesive adhesion. The results enable the in-depth understanding of the coating growth mechanisms and provide an objective evaluation of the coatings adhesion to the new cutting tools matrix. The results provide evidence to support the potential of TiN and TiCN coatings to enhance the working performances of the composite WC-Co cutting tools and to differentiate their properties. TiCN coating is shown to be superior to TiN coating in terms of adhesion and thus represents a better alternative for coating the modified WC-Co composite matrix.  相似文献   

20.
AlTiN-Ni coatings with various Ni contents (0–3?at%) were deposited using cathodic arc evaporation. X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, a nanohardness tester, scratch-adhesion tester, and cutting tester were used to examine the microstructure, mechanical properties, and cutting performance of the coatings. The AlTiN coatings exhibited a columnar structure, while the AlTiN-Ni coatings exhibited a nanocrystal structure due to the formation of nc-AlTiN/Ni nanocomposite coatings. The nanohardness of the AlTiN-Ni coatings decreased from 26.2?GPa to 20.9?GPa as the Ni content increased from 0 to 3?at%. At an Ni content of 1.5?at%, the coating possessed a high toughness and sufficient adhesion strength; however, these dropped drastically for the AlTiN-Ni coating with 3?at% Ni owing to the presence of amorphous Ni. The results for the Inconel 718 turning indicated that the wear mode is adhesion at the rake face, abrasion and adhesion (built-up edge) at the flank face, and chipping at the cutting edge. Compared to AlTiN-Ni3 and AlTiN-coated tools, the lifetime of the AlTiN-Ni1.5 coated tool increased to 160% at a cutting speed of 40?m/min. This was attributed to less adhesion at the rake face and chipping at the cutting edge, due to the nanocrystal structure and higher toughness of the AlTiN-Ni1.5 coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号