首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid growth method for vertically aligned, single walled carbon nanotube (SWCNT) arrays on flat substrates was applied to a fluidized-bed, using ceramic beads as catalyst supports as a means to mass produce sub-millimeter-long SWCNT arrays. Fe/Al2Ox catalysts were deposited on the surface of Al2O3 beads by sputtering and SWCNTs were grown on the beads by chemical vapor deposition (CVD) using C2H2 as a feedstock. Scanning electron microscopy and transmission electron microscopy showed that SWCNTs of 2–4 nm in diameter grew and formed vertically aligned arrays of 0.5 mm in height. Thermogravimetric analysis showed that the SWCNTs had a catalyst impurity level below 1 wt.%. Furthermore, they were synthesized at a carbon yield as high as 65 at.% with a gas residence time as short as <0.2 s. Our fluidized-bed CVD, which efficiently utilizes the three-dimensional space of the reactor volume while retaining the characteristics of SWCNTs on substrates, is a promising option for mass-production of high-purity, sub-millimeter-long SWCNT arrays.  相似文献   

2.
Palladium nanoparticles supported on silica were prepared by hydrazine reduction in aqueous medium at room temperature. They were characterized by XRD, TEM, EDX, H2-adsorption, and H2-TPD. The catalytic properties were evaluated in the gas-phase hydrogenation of benzene in the temperature range of 75–250 °C. Metal particles with a size range of 4.0–25.8 nm were obtained. The metal surface area and hydrogen storage increase with decreasing metal particle size. The H2-TPD profiles exhibited a main peak appeared at 540 °C with two shoulders at lower (445 °C) and higher (605 °C) temperatures. These peaks were ascribed to strongly adsorbed hydrogen on the surface catalyst. The catalytic activity of the catalysts strongly depends on the metal loading. It increases with decreasing Pd loading. This is ascribed to metal surface area, which increases with decreasing Pd content.  相似文献   

3.
CoMgAl layered double hydroxides were prepared as catalysts for the in situ synchronous growth of graphene and single-walled carbon nanotubes (SWCNTs) from methane by chemical vapor deposition. The as-calcined CoMgAl layered double oxide (LDO) flakes served as the template for the deposition of graphene, and Co nanoparticles (NPs) embedded on the LDOs catalyzed the growth of SWCNTs. After the removal of CoMgAl LDO flakes, graphene (G)/SWCNT/Co3O4 hybrids with SWCNTs directly grown on the surface of graphene and 27.3 wt.% Co3O4 NPs encapsulated in graphene layers were available. Further removal of the Co3O4 NPs by a CO2-oxidation assistant purification method induced the formation of G/SWCNT hybrids with a high carbon purity of 98.4 wt.% and a high specific surface area of 807.0 m2/g. The G/SWCNT/Co3O4 hybrids exhibited good electrochemical performance for pseudo-capacitors due to their high Co3O4 concentration and the high electrical conductivity of SWCNTs and graphene. In another aspect, the G/SWCNT hybrids can be used as excellent electrode materials for double-layer capacitors. A high capacity of 98.5 F/gelectrode was obtained at a scan rate of 10 mV/s, 78.2% of which was retained even when the scan rate increased to 500 mV/s.  相似文献   

4.
Two methods for the preparation of Pd/Ce0.5Sn0.5O2 catalysts have been used: solution combustion (SC) of Pd, Ce and Sn precursor mixtures, and incipient wetness impregnation by [Pd(NO3)2(H2O)2] solution of Ce0.5Sn0.5O2  δ support, obtained by the SC technique (SC + IWI). The formation of metallic palladium was observed in addition to ionic palladium in a Pdx(Ce0.5Sn0.5)1  xO2  x  δ solid solution due to high-temperature Pd precursor decomposition during the SC process. IWI of Ce0.5Sn0.5O2  δ support has been demonstrated to lead to a uniform solid solution of Pd2 + ions in the Ce0.5Sn0.5O2  δ matrix at 1% Pd content that resulted in high catalyst activity towards CO oxidation. The increase of Pd content to 5% showed no influence on catalytic activity. This observation is explained by the formation of low active PdO species when Pd content is more than 1%. The proposed SC + IWI method allows obtaining highly active Pd/Ce0.5Sn0.5O2 catalysts with low palladium content.  相似文献   

5.
Noble-metal promoters have been added to catalysts for reactions such as steam-methane reforming, but have rarely been applied to systems that produce H2 from larger, biomass-derived molecules, such as polyols or cellulose. We have previously found that nickel catalysts supported on mesocellular-foam-(MCF)-type silica catalyze H2 formation during cellulose pyrolysis, and sought to increase their activity. Thus, palladium-promoted nickel catalysts supported on MCF were prepared, and their activities were tested in cellulose pyrolysis (RT  800 °C, 40 °C/min) under dry argon. A thermogravimetric analyzer–mass spectrometer (TG–MS) was used to semi-quantitatively monitor the gases, especially H2, that were released during pyrolysis over catalysts with and without Pd promoters. Although the Pd promoters had little impact on the fraction of H2 in the product gas, adding ≥ 0.4 wt.% Pd enhanced the H2 yield from cellulose pyrolysis by increasing the total gas yield from the reaction. Thus the promoter improved H2 yield by enhancing the tar-cracking activity of the catalyst. A 5%Ni/MCF catalyst that was doped with 0.7 wt.% Pd yielded 85 cm3 H2/g cellulose, which was 15% more H2 than was obtained when the catalyst was 5%Ni/MCF.  相似文献   

6.
Pd nanoparticles of 1–6 nm were synthesized in graphite oxide (GO) via cation exchange. The synthesis procedure involved immobilization of the precursor Pd(NH3)4(NO3)2 in GO, followed by reduction in flowing H2. The resulting low-loaded Pd–GO material was characterized by X-ray diffraction (XRD), infrared (IR) spectroscopy and transmission electron microscopy (TEM). Structural characterization revealed that intercalation of the precursor took place in GO and the reduced Pd nanoparticles were situated both on the external surface and in the interlamellar space of the GO lamellae. The catalytic behaviour of Pd–GO was investigated in the liquid-phase hydrogenations of 3-hexyne and 4-octyne under standard conditions. For both reactants, marked turnover frequencies (18–36 s?1) and pronounced (Z)-alkene stereoselectivities (93–98.4%) were obtained, indicating that Pd–GO was a highly active and stereoselective catalyst. For the stereoselective hydrogenation of 3-hexyne, Pd–GO exhibited an outstanding catalytic performance: at reactant:Pd (S:Pd) ratios ? 5000, complete conversions were achieved in 8–15 min and the (Z)-alkene stereoselectivities exceeded 98%.  相似文献   

7.
The nanocrystalline TiO2 materials with average crystallite sizes of 9 and 15 nm were synthesized by the solvothermal method and employed as the supports for preparation of bimetallic Au/Pd/TiO2 catalysts. The average size of Au–Pd alloy particles increased slightly from sub-nano (< 1 nm) to 2–3 nm with increasing TiO2 crystallite size from 9 to 15 nm. The catalyst performances were evaluated in the liquid-phase selective hydrogenation of 1-heptyne under mild reaction conditions (H2 1 bar, 30 °C). The exertion of electronic modification of Pd by Au–Pd alloy formation depended on the TiO2 crystallite size in which it was more pronounced for Au/Pd on the larger TiO2 (15 nm) than on the smaller one (9 nm), resulting in higher hydrogenation activity and lower selectivity to 1-heptene on the former catalyst.  相似文献   

8.
Oscillations of the methane oxidation rate were studied under methane-rich conditions on Pd/Al2O3 catalysts differing in Pd particle size. It was demonstrated that the temperature interval where oscillations occur narrows from 300–360 °C for the catalyst with Pd particle aggregates from 50–100 nm to 345–355 °C for the catalyst with isolated Pd particles of ~ 5 nm in size. At the same time, the period of oscillations showed ~ 6-fold increase. Structural transformations of Pd in the oscillation cycle were similar to those observed on bulk Pd used as a catalyst in the same reaction.  相似文献   

9.
Hydrodechlorination of chlorophenols at lower temperature was investigated over Pd catalyst supported on mesoporous silica-carbon nanocomposites (Pd/MSC). Characterization by XRD, HRTEM and H2-TPD has shown Pd nanoparticles of 7 nm with saw-edged GB at nanocrystal joining areas and edge steps. The catalyst exhibits high activity for hydrodechlorination of chlorophenols at 258–313 K under normal hydrogen pressure. Using triethylamine as a probe combining with further theoretical calculation, it reveals that the HDC of chlorophenols at low temperature mainly occurs on Pd defects, meanwhile reactive H species plays a direct role when the reactant adsorbs on Pd via the formation of eithei π- or σ-complex.  相似文献   

10.
Pd(II)– and Pt(II)–azido complexes, [M(N3)(PMe3)2(C–L)] {LH = 2-(2′)-thienyl pyridine; M = Pd (1), Pt(2)}, which contain σ-bonded heterocycles (L), were treated with aryl isothiocyanate (Me2C6H3–NCS) to afford the corresponding Pd(II) and Pt(II) tetrazole–thiolato complexes, trans-{M[SCN4(2,6-Me2C6H3)](PMe3)2(C–L)} {M = Pd (3), Pt (4)}. Complexes 3 and 4 have a 1-D helical network formed by the intermolecular M?S van der Waals contacts.  相似文献   

11.
In an investigation of structure–property–processing relationships for SWCNT thin film piezoresistive sensors, the gauge factor of the sensors for a small tensile deformation (less than 2% strain) was found to be close to unity and showed negligible dependence on the film thickness and SWCNT bundle length (L) and diameter (d). However, for a large tensile deformation (20–30% strain), the film thickness and the microstructure of SWCNTs had a compounding effect on the piezoresistive behavior. A gauge factor of ∼5 was obtained for the sensors fabricated with SWCNT bundles of short length and thin diameter (L = 549 nm and d = 3.7 nm) with thicker films. Furthermore, the gauge factor of the sensors was found inversely proportional to the excluded volume Vex of SWCNT bundles (Vex  1/L2 d).  相似文献   

12.
Hydrodeoxygenation of phenol, as model compound of bio-oil, was investigated over Pd catalysts, using formic acid as a hydrogen donor. The order of activity for deoxygenation of phenol with Pd catalysts was found to be: Pd/SiO2 > Pd/MCM-41 > Pd/CA > Pd/Al2O3 > Pd/HY  Pd/ZrO2  Pd/CW > Pd/HSAPO-34 > Pd/HZSM-5. The good performance of Pd/SiO2 is owing to its proper pore structure and large specific surface area. The high level of Brønsted acid sites in SiO2 also favors the deoxygenation of phenol.  相似文献   

13.
Pd(5) impregnated metal/silica-pillared H-keyaites (M-SPK, M = Ti, Zr) catalysts were prepared for the partial oxidation of methane (POM) to hydrogen. The catalysts were characterized by BET, TEM, SAXS and XPS. In addition, the catalytic yield of the POM to hydrogen over Pd(5) impregnated on M-SPK and Pd(5)/Al2O3, commercial catalyst were investigated in a fixed bed flow reactor under (Ed atmosphere. BET-specific surface areas, average pore sizes and nitrogen adsorption/desorption isotherms were 284.3–396.2 m2/g, 3.3–3.8 nm and type B on type IV isotherms for Pd(5)/M-SPK(M = Ti, Zr), and 90.5 m2/g, 8.3 nm and type E on type IV isotherm for Pd(5)/Al2O3, respectively. TEM images of SPK and Pd(5)/SPK showed the formation of mesoporous layer compounds, as well as the homogenous dispersion of Pd particles on the surface. SAXS peaks at 0.13 Å for fresh Pd(5)/SPK were maintained without being broken, even after about 53 h in stream at 973 K. XPS showed the existence of two oxidation states for Pd (Pd0 and Pd2+) on the surface of the catalyst, depending on the carrier, whereas the presence of Ti and Zr in SPK induced a change in the oxidation state (O2−, O) of the catalyst. The yield values of the POM to hydrogen over Pd(5)/M-SPK(M = Ti, Zr) were 64.9% and 55.8%, respectively, at 973K, CH4/O2 = 2, GHSV = 8.4 × 104 ml/gcat h, and these values were kept constant even after 70 h in stream. These results confirm that Ti and Zr in SPK frame induced oxidation states of Pd, and that the yield of Pd(5)/M-SPK positively regulates the POM to hydrogen.  相似文献   

14.
Catalyzed chemical vapor deposition (CCVD) grown single wall carbon nanotubes (SWCNT) with diameter of Dm = 1.5–2.5 nm were used as templates to host one-dimensional nanocrystals of CuI. The CuI@SWCNT nanocomposite was obtained using capillary filling of preopened SWCNTs by CuI melt at 650 °C. Nanocomposite structural studies were performed on a FEI Titan 60–300 at 80 kV. According to the model and image simulation CuI crystallizes within 1.5–2.0 nm SWCNTs in the form of one-dimensional crystals with zinc blende or rock salt type unit cell connected by [0 0 1] edges and translated along 〈1 1 0〉. Copper cations occupy tetrahedral or octahedral sites in the lattice. In SWCNTs with Dm 2.0 nm 3DCuI@SWCNTs were generated. The crystals of copper halides exhibit acceptor behavior as supported by Raman spectroscopy.  相似文献   

15.
The partial hydrogenation of sunflower oil on a few supported Pd catalysts in supercritical (SC) dimethyl ether (DME) as reaction solvent was studied to obtain hydrogenates with low trans C 18:1 and stearic contents.The kinetics was determined on eggshell 0.5% Pd/Al2O3 and uniform 2% Pd/C catalysts using a sequential experimental design in a continuous, radial-flow, internal recycle reactor. The operating variables were temperature (456–513 K), pressure (18–23 MPa) and the space-velocity (WHSV = 41–975 h−1). The rotation frequency and the molar feed concentration (oil:H2:DME) were held constant at 157 rad/s and 1:4:95 mol%, respectively. Kinetic scheme was based on that published before. Some reactor runs were simulated using mixed-flow assumption and the kinetics data for both systems with good results. A comparison was established between the eggshell 0.5% Pd/Al2O3 in DME and the data for 2% Pd/C in propane with respect to trans production and stearic formation. trans seems to be lower using 2% Pd/C in propane, while the undesired stearic formation is less on the eggshell 0.5% Pd/Al2O3 catalyst in DME. An overview is presented on the merits of the catalysts available for the SCF process in terms of linoleic selectivity and trans yield on a few vegetable fats.  相似文献   

16.
The structure and properties of Pd/WO3–ZrO2 (W/Zr = 0.2) catalysts with different Pd loadings and precursors were investigated. The results indicate that Pd/WO3–ZrO2 prepared from a PdCl2 precursor was optimum for high activity and selectivity. Moreover, ethylene conversion increased with the Pd loading. The structure and nature of the catalysts were characterized using X-ray diffraction, BET N2 adsorption, H2 temperature-programmed reduction and H2 pulse adsorption techniques. The results reveal that the higher catalytic performance of Pd/WO3–ZrO2 prepared from PdCl2 could be related to the formation of polytungstate species and the existence of well-dispersed Pd particles.  相似文献   

17.
Pd/Al2O3 and Pd/SiO2 catalysts containing Pd nanoparticles in the size range of 3–13 nm were prepared and investigated in direct selective hydrogenation of phenol to cyclohexanone. Catalysts with 3 nm Pd nanoparticles present highly active and promoted the selective formation of cyclohexanone under atmospheric pressure of hydrogen in aqueous media without additives. Conversion of 99% and a selectivity higher than 99% were achieved within 3 h at 333 K. The generality of Pd/Al2O3 catalyst with 3 nm Pd nanoparticles for this reaction was demonstrated by selective hydrogenation of other hydroxylated aromatic compounds with similar performance.  相似文献   

18.
Single-walled carbon nanotube (SWCNT)/silicone rubber composites that can be used in fabricating compliant electrodes are prepared by spraying a mixed solution of ionic-liquid-based SWCNT gel and silicone rubber onto an elastic substrate. Subsequently, the composites are exposed to nitric acid vapor. Scanning electron microscopy and atomic force microscopy images of the composites show that the SWCNTs are finely dispersed in the polymer matrix due to the addition of the ionic liquid. Doping of the SWCNTs by nitric acid can significantly lower the sheet resistance (Rs) of the composites; samples with 4 wt% of SWCNT content exhibit the lowest Rs value (50 Ω sq?1). This sheet resistance corresponds to a conductivity value of 63 S cm?1. In addition, the composites retain a high conductivity after several tensile strains are applied. Stretching the composite sample to 300% of the original length increased the Rs value to 320 Ω sq?1 (19 S cm?1). Even after 20th stretch/release/stretch cycle, the conductivity remains constant at a value of 18 S cm?1. These results provide a scalable route for preparing highly stretchable and conductive SWCNT composites with relatively low SWCNT concentrations.  相似文献   

19.
Single-walled carbon nanotubes (SWCNTs)/TiO2 hybrid gas sensors operated at a room temperature were fabricated. SWCNTs were stabilized on a Si substrate with interdigitated Pt-electrodes to prepare a gas sensor. Sensing properties of the gas sensor were measured in various concentrations of NO gas. Resistance of the prepared SWCNT based gas sensor decreased with increase of NO gas concentration due to electron transfer from p-type SWCNTs to NO molecules. The SWCNT gas sensor showed high sensitivity and rapid response to the test gas. The hybrid gas sensor using SWCNTs doped with anatase TiO2 nano-particles was developed, which could work at room temperature under UV-LED (λ = 377 nm) irradiation. It showed rapid recovery to the initial state and higher sensitivity than the SWCNT gas sensor due to TiO2 photocatalytic effect.  相似文献   

20.
We report new developments on the chemical vapor deposition growth of 0.4 nm single-walled carbon nanotubes (SWCNTs) inside the linear channels of the aluminophosphate zeolite, AlPO4-5 (AFI), single crystals (0.4 nm-SWCNT@AFI). Ethylene (C2H4) and carbon monoxide (CO) were used as the feedstock. Polarized Raman spectroscopy was used to analyze the structure and quality of SWCNTs, both the radial breathing mode and G-band are much clearer and stronger than the samples grown by the old process which used template tripropylamine molecules for growing SWCNT@AFI. From the Raman spectra, it is clearly seen that the RBM is composed of two peaks at 535 and 551 cm−1. By using the pseudopotential module in Material Studio to calculate the Raman lines, the 535 cm−1 peak is attributed to the (5,0) SWCNTs and the 551 cm−1 peak to the (3,3) SWCNTs. The abundance of (4,2) is relatively small. Thermal gravity analysis showed that while the samples grown by CO display less than 1 wt% of carbon, for the samples heated in C2H4 atmosphere the weight percentage of SWCNTs is around 10%, which implies ∼30% of the AFI channels are occupied with SWCNTs, a significant increase compared with the previous samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号