首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在分析了国内外热误差建模方法的基础上,提出了一种基于改进的模糊C均值聚类算法,从而基于多元线性回归理论建立教学型复合机床主轴热误差模型。使用温度传感器对机床主轴不同位置进行温度测量,并采用改进的模糊C均值聚类法对所测量数据进行分组,筛选出每组的最优温度值进行迭代。采用优选出的温度数据,采用多元线性回归建模法对机床主轴热误差进行预测建模。通过实验验证多元线性回归理论创建的预测建模分析可得:补偿后,教学型复合机床的主轴Y、Z方向受温度影响的热误差降低到了5.4μm以内,通过对改进的模糊C均值聚类法和多元线性回归模型相结合,使机床主轴在Y、Z方向误差有所降低,能更好的预测主轴热误差,从而提高机床加工精度。  相似文献   

2.
数控机床的热变形误差是影响其加工精度的主要因素。针对当前机床热误差难以解决的问题,提出一种融合模糊聚类理论、灰色关联理论和多元线性回归理论的热误差建模及补偿原理,通过应用于实验室自主研制的AGPM,经机床温度场的测点优化分析、多元线性回归求解,建立了精确的热误差补偿模型。经补偿验证,该原理理论正确、简单易行、稳定可靠,可以大幅减小机床的热变形误差。  相似文献   

3.
为了降低机床主轴运行产生的热误差,建立混合算法优化BP神经网络预测模型,通过实验验证预测精度。分析模拟退火算法和粒子群算法的不足,采用模拟退火算法耦合粒子群算法,给出混合算法寻优步骤。引用BP神经网络结构,构造机床主轴热误差预测模型,采用混合算法优化BP神经网络预测模型。采用实验验证主轴热误差预测精度,并与优化前进行比较和分析。结果显示:采用混合算法优化后的BP神经网络预测模型,其Y轴方向产生的最大误差值从7.3μm降低到2.3μm;而Z轴方向产生的最大误差值从7.5μm降低到2.6μm。同时,机床主轴整体误差波动幅度较小。采用混合算法优化BP神经网络预测模型,用于机床主轴热误差在线补偿,提高了加工精度。  相似文献   

4.
何郑曦  荣茂林 《机床与液压》2021,49(17):117-122
针对机床热误差补偿技术中热态特性建模与热关键点辨识困难问题,提出一套较完善的主轴热态特性建模方法与热关键点快速辨识技术。考虑主轴系统温度与热变形等因素,建立主轴热态特性分析模型,结果表明:模型预测值与某精密卧式加工中心的热误差实测量值之间的误差均在20%以内,说明了所提建模方法的正确性。将模型输出结果用于主轴热关键点辨识,根据12个测点的热传递函数值筛选出6个热关键点;利用6个关键点的数据,基于BP神经网络建立一种主轴热误差预测模型;对比BP神经网络预测的输出值与热态特性模型的输出值,结果表明:最大误差为-0.060 36μm、最大相对误差为-0.200 6%,验证了所提热关键点辨识方法的有效性。  相似文献   

5.
在精密及超精密加工过程中,数控机床热误差是影响加工精度的一项重要误差源,最经济和有效地减少热误差的方法是热误差补偿技术。针对热误差补偿预测模型的预测精度问题,提出一种非线性组合预测模型。该预测模型利用灰色关联度方法对单项预测模型进行筛选,对筛选出的单项预测模型基于不同优化准则进行线性组合,通过广义回归神经网络对该线性组合模型进行非线性组合,得到非线性组合预测模型。误差预测结果表明:对比典型的BP神经网络预测模型,非线性组合预测模型的预测精度更高,最大误差由4.78μm减小到0.7μm。  相似文献   

6.
为了降低铣床主轴旋转受温度影响而产生的位移变形量,提高铣床对零件的加工精度,采用了模糊C均值聚类法和多元线性回归理论对铣床主轴的热误差进行建模,实现铣床主轴加工误差值最小化;分析了模糊C均值聚类法筛选最优值的迭代过程,对铣床上不同位置的测量温度值进行分组,筛选出每组的最优温度值;采用多元线性回归理论,对铣床热误差理论预测模型进行了推导,通过实验验证多元线性回归理论所创建的热误差预测模型。实验结果表明:补偿前,铣床主轴Y方向和Z方向受温度影响产生的热误差最大值分别为45.0μm和28.0μm;补偿后铣床主轴Y方向和Z方向受温度影响产生的热误差最大值分别为3.2μm和3.8μm,误差范围都在4μm以内。采用模糊C均值聚类法和多元线性回归理论对铣床热误差进行补偿,铣床主轴运转受温度影响所产生的误差明显降低,从而提高了主轴定位精度。  相似文献   

7.
为减小热误差对数控机床加工精度的影响,提出基于GA-BP神经网络的机床热误差优化建模方法。阐述遗传算法(GA)和BP神经网络算法,介绍GA-BP神经网络模型的具体步骤,建立BP神经网络热误差预测模型和GA-BP网络热误差优化模型。运用MATLAB软件对两种模型进行实验仿真,结果表明:GA-BP神经网络的数控机床热误差优化建模方法具有建模时间短、预测精度高、收敛速度快等优点。  相似文献   

8.
为提高数控机床的运动性能和加工精度,提出了基于自然指数模型的机床定位误差建模方法.通过分析在不同温度条件下的定位误差变化规律,将定位误差分为几何误差和热误差两个部分,其中,几何误差部分可以采用多项式模型进行拟合,而对于热误差部分,则建立其与环境温度、机床关键构件温度之间的自然指数模型,从而描述了热误差和温度场之间的非线性变化规律.通过与传统的多元线性回归模型进行试验结果对比表明:基于自然指数模型的定位误差建模方法在任何温度条件下均可获得较高的预测精度,经过误差补偿,可以大幅提高机床精度.  相似文献   

9.
为了提高精密研抛数控机床的加工精度,对研抛数控机床的几何误差与热误差进行了研究与分析,发现随着机床相关部件温度的不断升高直至热稳态,机床的定位误差也不断增加到稳态值,验证了几何误差和热误差是精密及超精密加工误差的主要来源。综合考虑了机床复合误差的不同特点并进行误差分离,提出了基于牛顿插值算法和最小二乘法的几何与热复合误差建模方法,依据复合误差模型进行补偿实验,补偿后机床冷态下定位误差值从3.5μm降至1.2μm,误差降低了65.7%,热稳态后定位误差值从12.2μm降至1.9μm,误差降低了84.4%,实验结果证明复合误差模型计算简单、预测精度高、具有较好的鲁棒性,为提高机床的加工精度提供了理论与实践依据。  相似文献   

10.
针对高速数控机床的热特性,提出了一种基于优化模糊神经网络(GA-BP-FNN)热误差建模及预测方法。利用遗传算法和反向传播算法对模糊神经网络进行优化,改善了因隶属度函数取值随机性导致热误差模型的鲁棒性降低的现象。以一台超高速随动曲轴数控磨床为研究对象,进行了主轴Z向热误差建模试验,同时与BP神经网络建模方法进行比较,实验结果表明:GA-BP-FNN建模方法优于BP神经网络建模方法,GA-BP-FNN模型的均方根误差为4.801μm,绝对百分比误差为1.36%。  相似文献   

11.
在高速高精度机床的加工过程中,由于各种热源的作用会导致机床产生热变形,从而影响其加工精度.针对整机热变形误差是影响机床加工精度的最大误差源,提出采用模糊聚类分析法对测温点进行优化选择,并利用多元线性回归方法建立整机热变形与温度之间的数学模型.结果表明,经优化后的温度变量应用到热误差模型中能够有效的预测整机的热变形,并且补偿效果很好.  相似文献   

12.
单一工况条件下数控机床主轴热误差模型无法准确预测其它工况下的热误差。通过研究分析支持向量机回归的算法和参数的关系,提出一种经过遗传算法(GA)在多工况条件下优化的支持向量机(SVM)的建模方法。以一台数控车床为研究对象,进行热误差测量实验,利用电涡流位移传感器和温度传感器同步测量机床主轴两个方向热误差和温度变化数值,获取两种工况的建模数据。运用遗传算法对SVM的惩罚函数、核函数参数和不敏感损失函数进行多工况条件下的优化选择,建立机床主轴热误差补偿模型。通过热误差建模实验验证,该方法在工况一的残差为0.838μm,工况二的残差为0.653μm,在保持较高预测精度的同时,能在两种工况下进行有效的热误差预测,使热误差补偿更适合实际加工环境。  相似文献   

13.
热误差是影响高精度数控机床加工精度的主要的误差因素.文章主要论述了利用BP神经网络来建立CX8075车铣复合加工中心电主轴热误差补偿模型的建模的过程,以两组不同的数据,分别进行的训练和预测,经过在软件MATLAB中的模拟测试,通过BP神经网络建立的电主轴热误差补偿模型具备了较高的拟合和预测精度.分析结果表明,电主轴的原始热误差值与模型计算的输出结果的值非常接近,最低补偿率可达90%以上,这代表运用该BP神经网络模型能够补偿大部分的热变形误差.  相似文献   

14.
为提高机床加工精度,研究并选择最佳模型对立式加工中心主轴热误差进行补偿。以KVC650E立式加工中心为实验对象,根据秋季数据对主轴热误差建立了多元线性回归、神经网络和支持向量机模型;将同一台机床和另一台同类型机床所测得的冬季数据分别代入3种模型计算各模型补偿精度;根据3种模型的精度变化规律比较三者的精确性、鲁棒性和通用性。实验结果表明:3种模型都有各自的优势,但支持向量机模型能在不同的环境温度和机床条件下保证较高的精度,综合性能最好。  相似文献   

15.
文中在综合分析了机床热误差的产生根源的基础上,提出了一种通过机床电机电流参数、速度参数及主轴冷却系统进、出油口的两点温度,利用多元线性回归模型,对加工中心切削过程的热误差进行实时预测的新方法。切削加工的实验结果表明,热误差的推定值与实测值具有良好的一致性。该方法用于机床热误差建模,具有测量参数少、测量成本低、测量方法简单可靠等优点,为实现机床热误差实时补偿系统的开发提供了一种新的思路。  相似文献   

16.
在数控机床热误差补偿技术中,温度测点的选择与优化是一个难点。文章采用逐步线性回归方法对核电轮槽铣床主轴箱的温度测点进行优化与建模。首先利用瞬态热-结构耦合分析了主轴箱在粗加工时的温升和热变形,再通过逐步线性回归方法对温度测点进行优化,利用优化后的温度测点建立了主轴X,Y,Z三个方向的热误差模型,最后对主轴箱在精加工运行时对所建立的模型进行了验证,结果表明:该方法不仅可以有效减小温度测点数目,还能保证模型的预测精度,三个方向的热误差均减小到5μm以下。  相似文献   

17.
数控机床热变形误差补偿技术   总被引:1,自引:0,他引:1  
热变形误差是影响机床加工精度的重要因素之一,通过实时热变形误差补偿可以提高数控机床加工精度.本文在分析产生机床热误差的原理的基础上, 探讨了热误差的测量方法,利用多元线性回归方法建立了机床热变形与温升之间的数学模型.应用数控系统的PLC补偿功能,对XH178加工中心加工过程中的热误差进行了实时补偿.实验结果表明误差补偿量达到80%以上.  相似文献   

18.
以减小机床热误差,提高加工精度为主要目标,设计以S3C2440A处理器与嵌入式Linux操作系统为控制平台,运用BP神经网络建立误差模型的热误差补偿控制器。首先,控制器通过布置在机床关键温度点上的温度传感器采集加工中心的温度信号,该信号经温度采集模块处理后送到CPU处理器计算出温度值。同时,用激光干涉仪检测出机床对应时刻的误差值。BP神经网络模型根据温度值与误差值计算出综合误差补偿值。然后,将计算出的补偿值通过接口传送给CNC控制中心,CNC控制中心做出误差控制指令,修正机床热变形造成的被加工工件的尺寸误差。仿真实验结果表明了补偿效果的可行性。  相似文献   

19.
针对车间多机床热误差补偿问题,提出了一种温度分布式采集、集中式建模计算的方法。下位机终端以STM32F1为核心,实现机床敏感点温度采集、补偿值数控系统交换等;上位机服务系统采用.NET平台AForge框架开发,并基于机床特性构建相应的粒子群优化BP神经网络热误差模型,实现了异构机床的集中热误差补偿计算。通过无线路由器及WDS无线桥接功能模块,扩展无线网络空间范围,热误差补偿终端与上位机服务基于Modbus TCP协议通信。通过功能测试及性能验证,上下位机系统工作稳定,具有良好灵活性及扩展性,有效简化了车间多机床的热误差补偿过程。  相似文献   

20.
针对数控插齿机固有的主轴进给系统结构带来的传动间隙引起波动性热变形建模预测精度不高的问题,提出一种基于均值平滑处理波动的模块化建模方法。利用模糊聚类结合灰色关联度方法和多元线性回归对该机床主轴x、y向分别建立热误差补偿模型,并计算预测残余值在不同分布范围的概率。结果表明:与传统热误差建模方法相比,模块化预测残余值在不同范围的分布较均匀,稳健性得到了有效提升,为热误差模块化建模方法提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号