首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of microstructure in the Al2O3/LaAl11O18 system was performed. Elongated alumina grains were formed by doping with small addition of silica, and 20 vol% lanthana- luminate was formed in situ by the reaction of LaAlO3- A12O3 in an alumina matrix. Strengths of over 600 MPa and a high fracture toughness (6 MPa.m1/2) were achieved in the material with both elongated A12O3 grains and LaAl11O18 platelets. Generally antagonistic properties such as strength and fracture toughness have been made compatible in the same ceramic system.  相似文献   

2.
Synthesis of LaAl11O18 by the solid-state reaction of La2O3 and Al2O3 occurs in two stages, i.e. LaAlO3 forms immediately at 1450°C in air but LaAl11O18 formation is very slow and requires up to 141 days. First-order kinetics were observed and an activation energy of 118±4 kcal was calculated. Formation of LaAl11O18 depends on external O2-gas partial pressure. In an N2-gas atmosphere, the very slow formation of LaAl11O18, observed in air, is slowed even further. Possible mechanisms are also discussed.  相似文献   

3.
With multi-wall carbon nanotubes (MWNTs) as reinforcement, a 12 vol% MWNTs/alumina (Al2O3) ceramic composite was obtained by hot pressing. A fracture toughness of 5.55±0.26 MPa·m1/2, 1.8 times that of pure Al2O3 ceramics, was achieved. Experimental results showed that the enveloping of carbon nanotubes (CNTs) with sodium dodecyl sulfate (SDS) is effective in changing the hydrophobicity of CNTs to hydrophilicity and improving the dispersion of CNTs in aqueous solution. Enveloped with SDS, CNTs can be homogeneously mixed with Al2O3 at a microscopic level by heterocoagulation. This mixing method can obviously improve the chemical compatibility between CNTs and Al2O3, which is important for enhancement of interfacial strength between them.  相似文献   

4.
The mechanical behavior of reaction-sintered alumina: 30 vol% calcium hexaluminate (Al2O3:CaAl12O19,or A12O3: CA6) composites was evaluated using the indentation strength in bending technique. A composite in which the hexaluminate (CA6) phase possessed a platelike morphology showed more-pronounced R -curve behavior than a composite in which the CA6 phase consisted of equiaxed grains. Toughness curves derived from the indentation-strength data exhibited a "crossover," such that the platelet composite exhibited the lower toughness at small flaw sizes, but the higher toughness at large flaw sizes. Incorporation of the platelet CA6 resulted in enhanced toughening, compared to single-phase alumina of comparable grain size, thus demonstrating the viability of the in-situ -toughening approach. A simple grain-pullout model was used to estimate the toughening increment due to bridging by the platelet grains; the value obtained was in good agreement with toughness curves derived from indentation-strength measurements. Finally, fabrication of trilayer specimens, whereby outer layers of equiaxed A12O3:CA6 composite were strongly bonded to the platelet A12O3:CA6 composite, demonstrated high strength over the range of tested flaw sizes.  相似文献   

5.
The compatibility of Al2O3 and LaPO4 at temperatures up to 1600°C is examined. Provided the ratio of La to P was close to 1:1, no reactions were observed after 200 h at 1600°C. Moreover, the Al2O3/LaPO4 interface remained sufficiently weakly bonded to cause deflection of cracks, as reported previously. In the presence of excess P or La, reactions occurred as expected, forming AlPO4 in the case of excess P, and LaAlO3 and LaAl11O18 in the case of excess La.  相似文献   

6.
Significant increases in the critical fracture toughness (K IC ) over that of alumina are obtained by the stress-induced phase transformation in partially stabilized ZrO2 particles which are dispersed in alumina. More importantly, improved slow crack growth resistance is observed in the alumina ceramics containing partially stabilized ZrO2 particles when the stress-induced phase transformation occurs. Thus, increasing the contribution of the ZrO2 phase transformation by tailoring the Y2O3 stabilizer content not only increases the critical fracture toughness (KIC) but also the K Ia to initiate slow crack growth. For example, crack velocities ( v )≥10–9 m/s are obtained only at K Ia≥5 MPa.m1/2 in transformation-toughened ( K IC=8.5 MPa.m1/2) composites vs K Ia≥2.7 MPa.m1/2 for comparable velocities in composites where the transformation does not occur ( K IC=4.5 MPa.m1/2). This behavior is a result of crack-tip shielding by the dissipation of strain energy in the transformation zone surrounding the crack. The stress corrosion parameter n is lower and A greater in these fine-grained composite materials than in fine-grained aluminas. This is a result of the residual tensile stresses associated with larger (≥1 μm) monoclinic ZrO2 particles which reside along the intergranular crack path.  相似文献   

7.
The pulse electric current sintering technique (PECS) was demonstrated to be effective in rapid densification of fine-grained Al2O3/3Y-ZrO2 using available commercial powders. The composites attained full densification (>99% of TD) at 1450°C in less than 5 min. The composites sintered at a high heating rate had a fine microstructure. The incorporation of 3 vol% 3Y-ZrO2 substantially increased the average fracture strength and the toughness of alumina to as high as 827 MPa and 6.1 MPa·m1/2, respectively. A variation in the heating rate during the PECS process influenced grain size, microstructure, and strength, though there was little or no variation in the fracture toughness.  相似文献   

8.
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2O3)-Al2O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2O3)/40 wt% Al2O3 exhibited an extremely high strength, 1000 MPa, at 1000°C.  相似文献   

9.
Additions of 1-20 mol% Sc2O3 or Y2O3 to MoSi2 eliminate glassy SiO2, which improves mechanical properties at both ambient and high temperatures. In particular, only 1 mol% ScO3 additions dramatically enhance three-point bending strength from 521 to 1081 MPa. Vickers hardness, Young's modulus, fracture toughness, and high-temperature strength are also improved by this low level of additive. The improvement of mechanical properties is attributed to the formation of crystalline silicates: Sc2Si2O7, Y2Si2O7, Y2SiO5, and Y4Si3O12, which are analyzed by XRD, SEM-EDS, and TEM-EDS methods.  相似文献   

10.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

11.
LaPO4/Al2O3 composites were fabricated by spark plasma sintering. The effects of LaPO4 contents on the mechanical properties of the composites were investigated. The bending strength and fracture toughness can reach the maximum value of 568.2±30 MPa and 4.8±0.5 MPa·m1/2 for the composite with 16.4 vol% LaPO4 addition, respectively. The elastic moduli and hardness of the composites decreased with increasing LaPO4 content. Furthermore, the experimental results show that the composites can be machined by a tungsten carbide drill as the LaPO4 volume fraction is higher than 34.4 vol%.  相似文献   

12.
In-Situ Alumina/Aluminate Platelet Composites   总被引:1,自引:0,他引:1  
Alumina composites containing in-situ-formed hexaluminate (LaAl11O18, LaMgAl11O19, SrAl12O19, and Mg2NaAl15O25) platelets can be pressureless-sintered to high density. The grain morphology of the aluminates can be controlled by composition. A peak toughness 50% higher than that of alumina is obtained at 30 vol% aluminates, with a modest reduction (10%) in hardness and Young's modulus. Although crack-bridging by aluminate platelets is apparently operating, the maximum toughness is intrinsically limited by the low cohesive strength of these layer compounds.  相似文献   

13.
Three composites that were 96% alumina were mixed and uniaxially dry-pressed into bars and pellets; all had monoclinic SrAl2Si2O8 as an intergranular phase. The diffraction patterns, microstructure, density, dielectric properties, strength, and toughness were measured. The first composition, which contained crystalline SrCO3, Al2O3, and SiO2, in a 1:1:2 molar ratio, as the 4% component, densified but was generally inferior to the second and third compositions, which contained strontium aluminosilicate (SrAl x Si y O z , SAS) glass as the 4% component, in terms of mechanical properties, defects, and monoclinic SrAl2Si2O8 transformation. The second composition, which lacked B2O3, was very tough and was comparable to commercial alumina, in terms of the dielectric constant. The third, which contained 0.068% of B2O3 that was dissolved in the SAS glass as a sintering aid, had high strength and toughness and no macroscopically visible defects. Mullite formed, in addition to monoclinic SrAl2Si2O8 in all three composites. Alumina–monoclinic SrAl2Si2O8 composites of the third composition had room-temperature properties that were comparable to commercial aluminas that contained 96% alumina and also had potential for mechanical and refractory applications.  相似文献   

14.
The fracture toughness of 3 mol% Y2O3-ZrO2 (3Y-PSZ) composites containing 10–30 vol% Al2O3 with different particle sizes was investigated. It was found that Al2O3 dispersion of up to 30 vol% increased the fracture toughness by 17% to 30%, and the toughness increase was more remarkable in the composite dispersed with Al2O3 particles of larger sizes. By combining the effects of the dispersion toughening and phase transformation toughening, the toughness change in the present materials was theoretically predicted, which was in good agreement with the experimental data.  相似文献   

15.
Simulataneous additions of SrO and Al2O3 to ZrO2 (12 mol% CeO2) lead to the in situ formation of strontium aluminate (SrO · 6Al2O3) platelets (∼0.5 μm in width and 5 to 10 μm in length) within the Ce-TZP matrix. These platelet-containing Ce-TZP ceramics have the strength (500 to 700 MPa) and hardness (13 to 14 GPa) of Ce-TZP/Al2O3 while maintaining the high toughness (14 to 15 MPa ± m1/2) of Ce-TZP. Optimum room-temperature properties are obtained at SrO/Al2O3 molar ratios between 0.025 and 0.1 for ZrO2 (12 mol% CeO2) with starting Al2O3 contents ranging between 15 and 60 vol%. The role of various toughening mechanisms is discussed for these composite ceramics.  相似文献   

16.
In the ZrO2-Cr2O3 system, metastable t -ZrO2 solid solutions containing up to 11 mol% Cr2O3 crystallize at low temperatures from amorphous materials prepared by the hydrazine method. The lattice parameter c decreases linearly from 0.5149 to 0.5077 nm with increased Cr2O3 content, whereas the lattice parameter a is a constant value ( a = 0.5077 nm) regardless of the starting composition. At higher temperatures, transformation (decomposition) of the solid solutions proceeds in the following way: t (ss)→ t (ss) + m + Cr2O3→ m + Cr2O3. Above 11 mol% Cr2O3 addition, c-ZrO2 phases are formed in the presence of Cr2O3. The t -ZrO2 solid solution powders have been characterized for particle size, shape, and surface area. They consist of very fine particles (15–30 nm) showing thin platelike morphology. Dense ZrO2(3Y)-Cr2O3 composite ceramics (∼99.7% of theoretical) with an average grain size of 0.3 μm have been fabricated by hot isostatic pressing for 2 h at 1400°C and 196 MPa. Their fracture toughness increases with increased Cr2O3 content. The highest K Ic value of 9.5 MPa·;m1/2 is achieved in the composite ceramics containing 10 mol% Cr2O3.  相似文献   

17.
Strength and fracture toughness results are presented for ZrO2 single crystals stabilized with Y2O3. The crystals (2 cm in diameter by 5 cm long) were prepared by skull melting. The partially stabilized compositions with 4 to 6 wt% Y2O3 showed a dramatic improvement in mechanical properties over the fully stabilized samples containing 20 wt% Y2O3, i.e. a strength exceeding 1000 MPa and a fracture toughness of 8 Mpa,.m 1/2 were achieved compared to 200 MPa and 2 Mpa.m1/2, respectively, for fully stabilized ZrO2 single crystals.  相似文献   

18.
Fracture toughness of ZrO2-toughened alumina could he increased by macroscopic interfaces, such as those existing in laminated composites. In this work, tape casting was used to produce A/A or A/B laminates, where A and B can be Al2O3, Al2O3/5 vol% ZrO2, and Al2O3/l0 vol% ZrO2. An increase of toughness is observed, even in the Al2O3/Al2O3 laminates.  相似文献   

19.
Subsolidus phase relationships in the Ga2O3–In2O3 system were studied by X-ray diffraction and electron probe microanalysis (EPMA) for the temperature range of 800°–1400°C. The solubility limit of In2O3 in the β-gallia structure decreases with increasing temperature from 44.1 ± 0.5 mol% at 1000°C to 41.4 ± 0.5 mol% at 1400°C. The solubility limit of Ga2O3 in cubic In2O3 increases with temperature from 4.X ± 0.5 mol% at 1000°C to 10.0 ± 0.5 mol% at 1400°C. The previously reported transparent conducting oxide phase in the Ga-In-O system cannot be GaInO3, which is not stable, but is likely the In-doped β-Ga2O3 solid solution.  相似文献   

20.
Composites of Al2O3 and Y2O3 partially-stabilized ZrO2 were isostatically hot-pressed using submicrometer powders as the starting material. The addition of Al2O3 resulted in a large increase in bending strength. The average bending strength for a composite containing 20 wt% Al2O3 was 2400 MPa, and its fracture toughness was 17 MN·w−3/2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号