首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An atom‐economic, practical and cost‐effective protocol for synthesis of chiral amino acid anilides via ligand‐free copper‐catalyzed selective C N cross coupling of chiral amino acid amides and aryl halides, hetereoaryl halides and a vinyl bromide has been developed. No racemization occurred during the C N coupling. A plausible mechanism is proposed.  相似文献   

2.
Unnatural amino acids, particularly synthetic α‐amino acids, are becoming crucial tools for modern drug discovery research. In particular, this application requires enantiomerically pure isomers. In this work we report on the resolution of racemic mixtures of the amino acids d,l ‐naphthylalanine and d,l ‐naphthylglycine by using a natural enzyme, D ‐amino acid oxidase from the yeast Rhodotorula gracilis. A significant improvement of the bioconversion is obtained using a single‐point mutant enzyme designed by a rational approach. With this D ‐amino acid oxidase variant the complete resolution of all the unnatural amino acids tested was obtained: in this case, the bioconversion requires a shorter time and a lower amount of biocatalyst compared to the wild‐type enzyme. The simultaneous production of the corresponding α‐keto acid, a possible precursor of the amino acid in the L ‐form, improves the significance of the procedure.  相似文献   

3.
α‐Sulfonated fatty acid methyl ester salts (MES), synthesized from renewable plant resources, are an example of green surfactants used in eco‐friendly washing detergents because of their excellent detergent properties, biodegradability, and enzyme stability. Although various physicochemical properties of MES crystals and micelles have been studied, mixed systems composed of MES and other surfactants have not been well studied. We investigated the crystalline structures of hydrated solids in mixed systems containing MES and soaps, which have been utilized as detergents, using small‐ and wide‐angle X‐ray scattering (SWAXS), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy techniques. The minimum dissolution temperature, determined by visual observation, of a 4:1 M ratio of the sodium salt of α‐sulfonated palmitic acid methyl ester (C16MES‐Na) and sodium palmitate (C16‐Na), is indicative of a eutectic mixture. SWAXS measurements reveal that C16MES‐Na and C16‐Na crystals are formed separately in this system. Eutectic mixtures were also observed for the C16MES‐Na/C16MES‐K (α‐sulfonated palmitic acid methyl ester potassium salt) system and in the C16MES‐K/C16‐Na system. Furthermore, in addition to C16MES‐K and C16‐Na crystals, C16MES‐Na crystals were also formed in the C16MES‐K/C16‐Na system, through counterion exchange during crystallization.  相似文献   

4.
Racemic cis‐10‐azatetracyclo[7.2.0.12,6.14,8]tridecan‐11‐one was prepared from homoadamant‐4‐ene by chlorosulfonyl isocyanate addition. The transformation of the β‐lactam to the corresponding β‐amino ester followed by Candida antarctica lipase A‐catalyzed enantioselective (E>>200) N‐acylation with 2,2,2‐trifluoroethyl butanoate afforded methyl (1R,4R,5S,8S)‐5‐aminotricyclo[4.3.1.13,8]undecane‐4‐carboxylate and the (1S,4S,5R,8R)‐butanamide with>99% ee at 50% conversion. Alternatively, transformation of the β‐lactam to the corresponding N‐hydroxymethyl‐β‐lactam and the following Pseudomonas cepacia (currently Burkholderia cepacia) lipase‐catalyzed enantioseletive O‐acylation provided the (1S,4S,6R,9R)‐alcohol (ee=87%) and the corresponding (1R,4R,6S,9S)‐butanoate (ee>99%). In the latter method, competition for the enzyme between the (1R,4R,6S,9S)‐butanoate, 2,2,2‐trifluoroethyl butanoate and the hydrolysis product, butanoic acid, tended to stop the reaction at about 45% conversion and finally gave racemization in the (1S,4S,6R,9R)‐alcohol with time.  相似文献   

5.
The first catalytic synthesis of β,γ‐alkynyl α‐amino acid derivatives was achieved by direct addition of terminal alkynes to α‐imino esters in the presence of an Ag(I) salt under mild reaction conditions.  相似文献   

6.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


7.
Highly enantioselective biomimetic Michael addition reactions of malonic acid half thioesters (MAHTs) to a variety of nitroolefins, affording the optically active γ‐amino acid precursors, were developed by employing the Cinchona‐based squaramides (up to >99% ee). Remarkably, this biomimetic process is enantioconvergent, a highly desirable feature of a catalytic asymmetric reaction, whereby E/Z‐isomers of the nitroolefins afford the same product enantiomer. The synthetic utility of this organocatalytic protocol was also demonstrated in the formal synthesis of pharmaceutically important γ‐amino acids such as baclofen. Moreover, a quantum chemical analysis of the catalyst‐substrate complexes is shown to give a detailed and instrumental insight into the origin of the observed catalytic activity.  相似文献   

8.
The high enantioselective rhodium‐catalyzed hydroformylation of 1,1‐disubstituted allylphthalimides has been developed. By employing chiral ligand 1,2‐bis[(2S,5S)‐2,5‐diphenylphospholano]ethane [(S,S)‐Ph‐BPE], a series of β3‐aminoaldehydes can be prepared with up to 95% enantioselectivity. This asymmetric procedure provides an efficient alternative route to prepare chiral β3‐amino acids and alcohols.  相似文献   

9.
Access to enantiopure β‐amino acids : β‐Aminopeptidases are hydrolases that possess the unique ability to cleave N‐terminal β‐amino acids from peptides and amides. Hydrolysis of racemic β‐amino acid amides catalyzed by these enzymes displays enantioselectivity with strong preference for substrates with the L ‐configuration, and gives access to various aliphatic β‐amino acids of high enantiopurity.

  相似文献   


10.
An organocatalytic approach for the stereoselective synthesis of 3,4‐dihydrocoumarins with an α,α‐disubstituted amino acid moiety incorporated is presented. The developed methodology is based on the cascade reaction between α‐substituted azlactones and 2‐hydroxychalcones. It is initiated by a chiral Brønsted base‐catalyzed enantio‐ and diastereoselective Michael reaction followed by the azlactone ring opening to construct a 3,4‐dihydrocoumarin framework. Products bearing two adjacent stereogenic centers, one being quaternary, were formed with high enantioselectivities and excellent diastereoselectivities. Furthermore, the complete regioselectivity of the new cascade reactivity is worthy of notice.

  相似文献   


11.
Triterpenes of betulinic acid type exhibit many interesting biological activities. Therefore a series of new 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid derivatives 2a—22 with putative pharmacological activities were synthesized. As starting compounds 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid ( 1a ), isolated from Schefflera octophylla, or its 3‐O‐acetyl derivative 1b were used. Mono‐ and diesters ( 2a—b from 1a , and 4d from 4c ) were prepared with CH2N2. Oxidation of the isopropenyl side chain with OsO4 yielded the 20,29‐diols ( 4a—b from 1b , and 19 from 17 ), which were in the case of 4b further transformed to the 29‐norketones 8a/mdash;b . Oxidation of the isopropenyl side chain with m‐chloroperbenzoic acid afforded the 20,29‐epoxide 12 (from 1b ) and the 29‐aldehydes and a‐hydroxy aldehydes ( 13a—c from 2a, 14a—c from 2b , and 16a—c from 15a ). Ring A was modified by a tosylation—elimination sequence using p‐TsCl/NaOAc, which afforded diolefin 15a (from 2a ) with Δ2,20(29) double bonds or 23‐nor‐Δ3,20(29)diolefin 17 (from 1a ). Compounds 4b, 4c , and 8a were coupled with L ‐methionin, L ‐phenylalanin, L ‐alanin, L ‐serin, and L ‐glutaminic acid via amide bonds at positions 23 and 28 to afford the amino acid conjugates 5a—7b and 9a—11 .  相似文献   

12.
Chiral amino acids are important intermediates for the pharmaceutical industry. We have developed a novel one‐pot enzymatic method for D ‐amino acid synthesis by the dynamic kinetic resolution of N‐succinyl‐dl ‐amino acids using D ‐succinylase (DSA) and N‐succinylamino acid racemase (NSAR, EC 4.2.1.113). The DSA from Cupriavidus sp. P4‐10‐C, which hydrolyzes N‐succinyl‐D ‐amino acids enantioselectively to their corresponding D ‐amino acids, was identified for the first time by screening soil microorganisms. Subsequently, the DSA gene was cloned and overexpressed in Escherichia coli. DSA was shown to comprise two subunits with molecular masses of 26 kDa and 60 kDa. Additionally, the NSAR gene from Geobacillus stearothermphilus NCA1503, which racemizes N‐succinylamino acids, was also cloned and overexpressed in E. coli. The highly purified DSA and NSAR prepared from each recombinant E. coli were characterized and used for D ‐amino acid synthesis. A one‐pot enzymatic method converted 100 mM N‐succinyl‐dl ‐phenylalanine to D ‐phenylalanine in 91.1% conversion with 86.7% ee. This novel enzymatic method may be useful for the industrial production of many D ‐amino acids.

  相似文献   


13.
张荣明  吴伟 《广州化工》2009,37(1):95-97
以亚硫酸氢钠、环氧氯丙烷、磷酸钠和油酸等为原料,合成了油酸-2-羟基-3-磺酸钠丙酯,探索了反应温度、催化剂、反应时间、反应物物质的量比等因素对合成的影响,得到了适宜的反应条件:环氧氯丙烷滴加到亚硫酸氢钠溶液中,反应时间3.5h,反应温度85℃,合成3-氯-2-羟基丙磺酸钠;3-氯-2-羟基丙磺酸钠加入磷酸钠溶液中,反应温度55℃,反应时间4.0h,合成环氧丙磺酸钠;环氧丙磺酸钠溶液滴加到90℃的油酸溶液中,反应时间3.0h,合成油酸-2-羟基-3-丙磺酸钠,产率为85.2%。对产品进行了红外光谱表征,产品显示了较好的表面活性。  相似文献   

14.
The stereochemical theory claims that primitive coded translation initially occurred in the RNA world by RNA‐directed amino acid coupling. In this study, we show that the HIV Tat aptamer RNA is capable of recognizing two consecutive arginine residues within the Tat peptide, thus demonstrating how RNA might be able to position two amino acids for sequence‐specific coupling. We also show that this RNA can act as a template to accelerate the coupling of a single arginine residue to the N‐terminal arginine residue of a peptide primer. The results might have implications for our understanding of the origin of translation.  相似文献   

15.
The carboxylate anion has been used as a directing group in the aromatic amination of electronically equivalent aryl bromides to afford selective ortho‐substituted derivatives (>99:1 selectivity; 60–80% yield) in the case of copper(I) catalysis. The solvent, base and equivalents of base were important factors in the success of this reaction. Complementary selectivity was achieved with palladium catalysis where the para‐substituted derivatives were produced selectively (>99% selectivity, 70–80% yield).  相似文献   

16.
The hydrogenation of carboxylic acid derivatives at room temperature was investigated. With a mixed Rh/Pt oxide (Nishimura catalyst), low to medium activity was observed for various α‐amino and α‐hydroxy esters. At 100 bar hydrogen pressure and 10% catalysts loading, high yields of the desired amino alcohols and diols were obtained without racemization. The most suitable α‐substituents were NH2, NHR, and OH, whereas β‐NH2 were less effective. Usually, aromatic rings were also hydrogenated, but with the free bases of amino acids as substrates, some selectivity was observed. No reaction was found for α‐NR2, α‐OR, and unfunctionalized esters; acids and amides were also not reduced under these conditions. A working hypothesis for the mode of action of the catalyst is presented.  相似文献   

17.
The consumption of omega‐3 polyunsaturated fatty acids (n‐3 PUFA) is associated with a reduced risk of breast cancer. Studies in animals and in vitro have demonstrated mechanisms that could explain this apparent effect, but clinical and epidemiological studies have returned conflicting results on the practical benefits of dietary n‐3 PUFA for prevention of breast cancer. Effects are often only significant within a population when comparing the highest n‐3 PUFA consumption group to the lowest n‐3 group or highest n‐6 group. The beneficial effects of n‐3 PUFA eicosapentaenoic and docosahexaenoic on the risk of breast cancer are dose dependent and are negatively affected by total n‐6 consumption. The majority of the world population, including the most highly developed regions, consumes insufficient n‐3 PUFA to significantly reduce breast cancer risk. This review discusses the physiological and dietary context in which reduction of breast cancer risk may occur, some proposed mechanisms of action and meaningful recommendations for consumption of n‐3 PUFA in the diet of developed regions.  相似文献   

18.
以亚硫酸氢钠、环氧氯丙烷、磷酸钠和月挂酸为原料合成7月桂酸-2-羟基-3-丙磺酸钠,研究了反应温度、反应时间、催化剂用量、反应物摩尔比等对反应的影响,确定了合成目标产物的最佳方案为:亚硫酸氢钠与环氧氯丙烷的摩尔比为1.15:1,环氧氟丙烷滴加到亚硫酸氢钠溶液中,85℃下滴加2 h,反应1.5 h,合成中间产物3-氯-2-羟基丙磺酸钠;3-氯-2-羟基丙磺酸钠加入到磷酸钠溶液中,55℃下反应4 h,合成中间产物2,3-环氧丙磺酸钠;2,3-环氧丙磺酸钠溶液滴加到月桂酸中,90℃下滴加0.5 h,反应2.5 h,合成月桂酸-2-羟基-3-丙磺酸钠,此时产率达85.2%,通过红外光谱时产物进行了表征.  相似文献   

19.
D-3-溴代樟脑-8-磺酸铵的合成方法改进   总被引:1,自引:0,他引:1  
崔新义 《山西化工》2004,24(4):40-41
以D-樟脑为原料,用溴素溴化后,进而在80℃-150℃融熔状态下进行磺化反应,再用碳酸铵成盐得D-3.溴代樟脑-8-磺酸铵,总收率24.54%。  相似文献   

20.
Bioisosterism of α‐amino acids is often accomplished by replacing the α‐carboxylate with one of the many known carboxylic acid bioisosteres. However, bioisosterism of the whole α‐amino acid moiety is accomplished with heterocyclic bioisosteres that often display an acidic function. In this Minireview, we summarized the reported heterocycles as nonclassical bioisosteres of α‐amino acids, which include quinoxaline‐2,4(1H)‐dione, quinoxaline‐2,3(1H)‐dione and quinolin‐2(1H)‐one, azagrevellin and azepine‐derived structures. The binding mode of the crystalized bioisosteres were compared with those of the crystalized α‐amino acids that bind in the same domain, and where no data on the crystal structure were available, the displacement studies of known orthosteric ligands were used. The reported bioisosteres share the following essential structural features for mimicking α‐amino acids: an aromatic ring system joined to a lactam ring system with an acidic feature next to the lactam carbonyl, where this acidic feature together with the lactam carbonyl can mimic the α‐carboxylate, and the lactam nitrogen together with the aromatic ring system can mimic the α‐ammonium. The majority of these heterocycles can be prepared from three common corresponding starting materials: the corresponding anilines, isatins or anthranilic esters. The data collected here show the potential of this class of bioisosteres in the design of glutamate receptor ligands and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号