首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica was homogeneously coated on the surface of CaCu3Ti4O12 (CCTO) particles via the sol–gel method. The obtained powders were characterized by x-ray diffraction analysis, Fourier-transform infrared spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectroscopy, scanning electron microscopy, and zeta potential analysis. The results demonstrate that there were silica layers on the surface of the CCTO particles. Physical and dielectric properties of silica-coated CCTO were also studied. TEM imaging showed that the thickness of the silica layer on the CCTO particles was about 20 nm to 35 nm. The specimen coated with 1.0 wt.% silica showed the maximum relative density of 96.7% with high dielectric constant (12.78 × 104) and low dielectric loss (0.005) at 20°C after sintering at 1000°C for 6 h.  相似文献   

2.
The effect of Zr4+ content on the grain growth, dielectric relaxation, and piezoelectric properties of Ba0.4Sr0.6Ti1?x Zr x O3 (BSTZ; x = 0, 0.02, 0.04, 0.06) ceramics prepared by solid-state (SS) and sol–gel modified hydrothermal (SH) methods assisted by fast microwave sintering was investigated in this study. A combination of x-ray diffraction (XRD), scanning electron microscopy (SEM), impedance analysis, and ferroelectric analysis was used. All the ceramics had pure perovskite structures at room temperature, as seen from XRD patterns, indicating that Zr4+ was incorporated into Ba0.4Sr0.6TiO3 lattices to form a solid solution. In the SEM micrographs, SH samples had higher densities and smaller and more homogeneous grain size than SS samples, which was in agreement with density measurements. Nano-ceramics were obtained by this method. When the temperature dependence of dielectric constant and dielectric loss was studied, SH samples had higher permittivity, better thermally activated relaxation, and lower dielectric loss at high temperature. Ferroelectric characteristics can still be detected in Ba0.4Sr0.6Ti1?x Zr x O3 ceramics and residual polarization (P r) decreased with increasing Zr4+ content.  相似文献   

3.
Lead metaniobate PbNb2O6 ceramics with addition of 0.5 wt.% ZrO2 (PNZr) were processed via the conventional solid-state reaction method and a two-step sintering process. A lower second sintering temperature efficiently prevents volatilization of Pb2+. X-ray diffraction patterns indicate that the samples are of orthorhombic ferroelectric phase. Scanning electron microscopy shows that abnormal grain growth was restrained. The dielectric anomalies around 300°C caused by oxygen vacancies are effectively reduced.  相似文献   

4.
Calcium copper titanium oxide (CaCu3Ti4O12, abbreviated to CCTO) films were deposited on Pt/Ti/SiO2/Si substrates at room temperature (RT) by radiofrequency magnetron sputtering. As-deposited CCTO films were treated by rapid thermal annealing (RTA) at various temperatures and in various atmospheres. X-ray diffraction patterns and scanning electron microscope (SEM) images demonstrated that the crystalline structures and surface morphologies of CCTO thin films were sensitive to the annealing temperature and ambient atmosphere. Polycrystalline CCTO films could be obtained when the annealing temperature was 700°C in air, and the grain size increased signifi- cantly with annealing in O2. The 0.8-μm CCTO thin film that was deposited at RT for 2 h and then annealed at 700°C in O2 exhibited a high dielectric constant (ε′) of 410, a dielectric loss (tan δ) of 0.17 (at 10 kHz), and a leakage current density (J) of 1.28 × 10−5 A/cm2 (at 25 kV/cm).  相似文献   

5.
Perovskite Ba0.999Pr0.001TiO3 ceramics has been prepared through a solid-state reaction method. Dielectric properties of the doped BaTiO3 (barium titanate) ceramics as a function of temperature at frequencies of 1 kHz, 10 kHz, 100 kHz, and 1 MHz are studied and reported here. Analyzing the empirical parameters, it has been shown that the Pr3+ addition up-shifted the temperature of the maximal dielectric constant to 180 (K) at 1 kHz. The value of the dielectric constant at higher frequencies dropped markedly. Such a marked drop in the value of the dielectric constant at higher frequencies can be explained in terms of interfacial polarization. The high dielectric constant at lower frequencies is due to the build-up of charges at the grain–grain boundary interface which is responsible for the large polarization. The ceramic was subjected to Rietveld refinement for quantitative analysis of the microstructure of the material.  相似文献   

6.
The effects of CuO addition on phase composition, microstructure, sintering behavior, and microwave dielectric properties of 0.80Sm(Mg0.5Ti0.5)O3-0.20 Ca0.8Sr0.2TiO3(8SMT-2CST) ceramics prepared by a conventional solid-state ceramic route have been studied. CuO addition shows no obvious influence on the phase of the 8SMT-2CST ceramics and all the samples exhibit pure perovskite structure. Appropriate CuO addition can effectively promote sintering and grain growth, and consequently improve the dielectric properties of the ceramics. The sintering temperature of the ceramics decreases by 50°C by adding 1.00 wt.%CuO. Superior microwave dielectric properties with a ε r of 29.8, Q × f of 85,500 GHz, and τ f of 2.4 ppm/°C are obtained for 1.00 wt.%CuO doped 8SMT-2CST ceramics sintered at 1500°C, which shows dense and uniform microstructure as well as well-developed grain growth.  相似文献   

7.
The effects of Ta2O5/Y2O3 codoping on the microstructure and microwave dielectric properties of Ba(Co0.56Zn0.40)1/3Nb2/3O3-xA-xB (A = 0.045 wt.% Ta2O5; B = 0.113 wt.% Y2O3) ceramics (x = 0, 1, 2, 4, 8, 16, 32) prepared according to the conventional solid-state reaction technique were investigated. The x-ray diffraction (XRD) results showed that the main crystal phase in the sintered ceramics was BaZn0.33Nb0.67O3-Ba3CoNb2O9. The additional surface phase of Ba8CoNb6O24 and trace amounts of Ba5Nb4O15 second phase were present when Ta2O5/Y2O3 was added to the ceramics. The 1:2 B-site cation ordering was affected by the substitution of Ta5+ and Y3+ in the crystal lattice, especially for x = 4. Scanning electron microscopy (SEM) images of the optimally doped ceramics sintered at 1340°C for 20 h showed a compact microstructure with crystal grains in dense contact. Though the dielectric constant increased with the x value, appropriate addition would result in a tremendous modification of the Q × f and τ f values. Excellent microwave dielectric properties (ε r = 35.4, Q × f = 62,993 GHz, and τ f  = 2.6 ppm/°C) were obtained for the ceramic with x = 0.4 sintered in air at 1340°C for 20 h.  相似文献   

8.
Calcium copper titanate (CaCu3Ti4O12) or CCTO is one of the most researched giant dielectric constant materials in recent years. In the present work, incoherent light source based photo-assisted metal-organic chemical vapor deposition (MOCVD) has been used to prepare CCTO thin films on Si/SiO2 substrates. Key to this unique processing technique is the use of UV radiation as an additional source of energy in conjunction to the thermal energy. The given Photo-assisted MOCVD processing resulted in polycrystalline CCTO growth on a SiO2 surface. Powder X-ray diffraction and scanning electron microscopy were performed to analyze structural and compositional properties of the CCTO thin film. Ellipsometric measurements indicated a refractive index of 3.03 for the CCTO thin film.  相似文献   

9.
Calcium bismuth niobate (CaBi2Nb2O9, CBN) is a high-Curie-temperature (T C) piezoelectric material with relatively poor piezoelectric performance. Attempts were made to enhance the piezoelectric and direct-current (DC) resistive properties of CBN ceramics by increasing their density and controlling their microstructural texture, which were achieved by combining the templated grain growth and hot pressing methods. The modified CBN ceramics with 97.5% relative density and 90.5% Lotgering factor had much higher piezoelectric constant (d 33 = 20 pC/N) than those prepared by the normal sintering process (d 33 = 6 pC/N). High-temperature alternating-current (AC) impedance spectroscopy of the CBN ceramics was measured by using an impedance/gain-phase analyzer. Their electrical resistivity was approximately 6.5 × 104 Ω cm at 600°C. Therefore, CBN ceramics can be used for high-temperature piezoelectric applications.  相似文献   

10.
Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10?3 at room temperature. The temperature coefficient of the dielectric constant was ?88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.  相似文献   

11.
固相反应烧结法制备CCTO陶瓷   总被引:1,自引:0,他引:1  
采用固相反应烧结法制备了CaCu3Ti4O12(CCTO)陶瓷,研究了其烧结性能、结构和介电性能。在1120℃烧结即可获得单相CCTO致密陶瓷,其收缩率高达22.3%。εr随着烧结温度升高而明显增大,且具有明显的频率敏感性,利用复阻抗谱分析了CCTO陶瓷的介电特性。于1120℃,烧结3h制备的CCTO陶瓷的εr为3005(室温,1kHz)。  相似文献   

12.
Using simple and low cost polyol method, α-NiS particles are synthesized at different pH conditions (pH 7–pH 14). Single phase formation and possible functional groups of α-NiS are identified through X-ray diffraction (XRD), and Fourier transforms infrared (FT-IR) spectroscopy, respectively. Further, X-ray photoelectron spectroscopy (XPS) clearly reveals the phase purity of α-NiS particles. Scanning electron microscopic (SEM) images reveals the presence of pseudo-spherical particles within the size range of 200–400 nm. Subsequently, the grain size alters the optical and electrical properties of the samples significantly. Similarly, α-NiS prepared at pH 8 provides high dielectric constant (2.3×104), and low dielectric loss (13×103), than the sample prepared at pH 7 of α-NiS.  相似文献   

13.
Starting with a BST (Ba0.6Sr0.4TiO3) nanopowder with a mean diameter of about 50 nm, the average grain size increases from the nanometer to the micrometer range (from 70 nm to 1–2 μm) by thermal annealing between 700 and 1400 °C. The dielectric properties of these pressed powders has been determined, showing that the temperature of transition decreases with grain size. In order to check this evolution in dense ceramics in which the grain size is conserved, composite materials based on ferroelectric nanograins and a non‐ferroelectric matrix have been prepared. Core–shell composites with different core sizes (150 and 50 nm) were synthesized in this way and the results obtained confirmed the decrease of the transition temperature with grain size, from 290 to 230 K respectively. Furthermore, dielectric losses are very weak in these core–shell composites—at between 0.1 and 1 % in the temperature range 150–450 K and the frequency range 1 × 103–1 × 105 Hz. Ferroelectric nanograins of BST were also incorporated into silica gel for comparison with the core–shell materials. Even for a high fraction of BST (approx. 75 %), the properties of the grains are masked by the presence of silica, which possesses a very low dielectric constant. This study has allowed the possible determination of the macroscopic dielectric properties in nanostructured ceramics.  相似文献   

14.
Microwave dielectric ceramics based on geikielite-type MgTiO3 were prepared by an aqueous sol–gel process. The precursor powders and dielectric ceramics were characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and microwave methods. Highly reactive nanosized magnesium titanate powders with particle sizes of 20 nm to 40 nm were successfully obtained at 500°C as precursors. Sintering characteristics and microwave dielectric properties of MgTiO3 ceramics were studied as a function of sintering temperature from 1100°C to 1300°C. With increasing sintering temperature, the density, ε r, and Qf values increased, saturating at 1200°C with excellent microwave properties of ε r = 17.5, Qf = 156,300 GHz, and τ f  = ?44 ppm/°C. Correlations between the microstructure and dielectric properties of MgTiO3 ceramics were also investigated.  相似文献   

15.
Fused silica ceramics were fabricated by gelcasting, by use of a low-toxicity NN-dimethylacrylamide gel system, and had excellent properties compared with those obtained by use of the low-toxicity 2-hydroxyethyl methacrylate and toxic acrylamide systems. The effect of sintering temperature on the microstructure, mechanical and dielectric properties, and thermal shock resistance of the fused silica ceramics was investigated. The results showed that sintering temperature has a critical effect. Use of an appropriate sintering temperature will promote densification and improve the strength, thermal shock resistance, and dielectric properties of fused silica ceramics. However, excessively high sintering temperature will greatly facilitate crystallization of amorphous silica and result in more cristobalite in the sample, which will cause deterioration of these properties. Fused silica ceramics sintered at 1275°C have the maximum flexural strength, as high as 81.32 MPa, but, simultaneously, a high coefficient of linear expansion (2.56 × 10?6/K at 800°C) and dramatically reduced residual flexural strength after thermal shock (600°C). Fused silica ceramics sintered at 1250°C have excellent properties, relatively high and similar flexural strength before (67.43 MPa) and after thermal shock (65.45 MPa), a dielectric constant of 3.34, and the lowest dielectric loss of 1.20 × 10?3 (at 1 MHz).  相似文献   

16.
The dielectric properties and conductivity behavior of WO3-doped K0.5Na0.5 NbO3 ceramics were investigated as a function of temperature (25°C to 600°C) and frequency (40 Hz to 106 Hz). The dielectric loss and direct-current (DC) conductivity of the ceramics depend strongly on the tungsten content. A high-temperature dielectric relaxation near temperature of 500°C was observed and analyzed using the semiempirical complex Cole–Cole equation. The activation energy of the dielectric relaxation was estimated to be ~2 eV and increased with increasing WO3. The frequency-dependent conductivity can be well described by the universal dielectric response law. The activation energy obtained from the DC conductivity changes from 0.93 eV to 1.49 eV. A possible mechanism for the high-temperature dielectric relaxation and conductivity is proposed based on the activation energy value and defect compensation.  相似文献   

17.
为了降低CaCu3Ti4O12(CCTO)陶瓷材料的介质损耗,采用传统固相反应法制备了组分为CaCu3–yZry/2Ti4O12(CCZTO)的陶瓷样品。研究了ZrO2掺杂对CCTO陶瓷性能的影响。结果表明:所制CCZTO陶瓷样品在维持了CCTO陶瓷材料介电常数大、低频介电常数随频率和温度变化小的优点的同时,介质损耗大幅降低;其介电常数和介质损耗的指标满足美国电子工业协会EIAZ5U标准,而温度系数αc性能指标优于EIAX7A标准所规定的±55×10–6/℃,是一种综合性能技术指标优良的新型高介电常数陶瓷材料。  相似文献   

18.
High-temperature capacitor materials sintered at 1120°C were prepared in a BaTiO3 (BT)-Na0.5Bi0.5TiO3 (NBT)-Nb2O5-ZnO-CaZrO3 system. The Curie temperature of BaTiO3 was increased by NBT doping, and a secondary phase occurred when adding ≥5 mol% NBT. The effects of Nb2O5, ZnO, and CaZrO3 on the dielectric properties and the microstructure of BT ceramics doped with 1 mol% NBT were analyzed. The overall dielectric constant decreased when the Nb2O5 content increased, and increased when the ZnO content increased. The dielectric constant peak at the Curie temperature was effectively depressed, and a broad secondary dielectric constant peak appeared at 60°C when the ZnO concentration was ≥4.5 mol%. Significant grain growth was observed by scanning electron microscope (SEM) analysis as the amount of ZnO increased. The high-temperature capacitor specification (−55°C to +175°C, ΔC/C 25°C less than ±15%) is met when 7 mol% to 8 mol% CaZrO3 is added.  相似文献   

19.
A polycrystalline sample of K2Pb2Gd2W2Ti4Nb4O30 was prepared by a high-temperature solid-state reaction method. The formation of the single-phase compound (at room temperature) was confirmed by preliminary x-ray structural analysis. The surface morphology recorded by scanning electron microscopy at room temperature exhibits a uniform grain distribution on the surface of the sample with few voids. Studies of the (i) variation of dielectric parameters with temperature (27°C to 430°C) and frequency (1 kHz to 5 MHz) and (ii) temperature dependence of polarization confirmed the existence of ferroelectricity in the material below the transition temperatures. Two dielectric anomalies observed at 304°C and 378°C suggest the existence of phase transitions in the material. The temperature and frequency dependences of electrical parameters of the material exhibit a strong correlation between microstructure and properties of the material. The temperature dependence of the direct-current (dc) conductivity shows the typical Arrhenius and negative temperature coefficient of resistance (NTCR) behavior of the material. The variation of the alternating-current (ac) conductivity with frequency obeys Jonscher’s universal power law. The current variation with temperature shows that the material has high pyroelectric coefficient and figure of merit, and thus it is useful for pyroelectric sensors. Even with a small piezoelectric coefficient (4.5 × 10?12 C/N), the material is confirmed to be ferroelectric.  相似文献   

20.
(1 ? x)BaTiO3-xBi(Mg0.75W0.25)O3 [(1 ? x)BT-xBMW, 0.02 ≤ x ≤ 0.24] ceramics were synthesized by a two-step solid-state reaction technique. X-ray diffraction (XRD) patterns show that a systematic structure evolution from tetragonal to pseudocubic phase was observed at x = 0.07. Raman spectra analysis illustrates that a change in average structure was observed with increasing x, and the local crystal symmetry which deviated from the idealized cubic perovskite structure appeared as x ≥ 0.07. Temperature dependence of dielectric properties indicates that the phase transition temperature (T c) decreased with increasing x. Moreover, (1 ? x)BT-xBMW (0.07 ≤ x ≤ 0.24) ceramics show good dielectric thermal stability over a wide temperature range, which indicates that these ceramics are candidates for thermal stability devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号