首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a 10-bit digital-to-analog converter (DAC) consisting of a 6-bit resistive DAC (RDAC) and a 4-bit offset-adjustable op-amp for LCD column driver applications. The 6-bit RDAC selects only one voltage from the global resistor string before transmitting it to the op-amp. The op-amp implements 4-bit interpolation by adjusting the offset voltage. The maximal differential nonlinearity and integral nonlinearity of the proposed converter were measured at 0.8 LSB and 0.81 LSB, respectively, using 1LSB equal to 2 mV. The proposed 10-bit DAC occupies only 70 % of the space required for a conventional 8-bit RDAC.  相似文献   

2.
Design of a high speed capacitive digital-to-analog converter (SC DAC) is presented for 65 nm CMOS technology. SC pipeline architecture is used followed by an output driver. For GHz frequency operation with output voltage swing suitable for wireless applications (300 mVpp) the DAC performance is shown to be limited by the clock feed-through and settling effects in the SC array rather than by the capacitor mismatch or kT/C noise, which appear negligible in this application. While it is possible to design a highly linear output driver with HD3 < ?70 dB and HD2 < ?90 dB over 0.5–5 GHz band as we show, the maximum SFDR of the SC DAC is 45 dB with 8-bit resolution and Nyquist sampling of 3 GHz. The capacitor array is designed based on the DAC design area defined in terms of the switch size and unit capacitance value. A tradeoff between the DAC bandwidth and resolution accompanied by SFDR is demonstrated. High linearity of the output driver is attained by a combination of two techniques, the derivative superposition (DS) and resistive source degeneration. In simulations the complete DAC achieves SFDR of 45 dB with 8-bit resolution for signal bandwidth 1.36 GHz with Nyquist sampling. With 6-bit and 5.5 GHz bandwidth 33 dB SFDR is attained. The total power consumption of the SC DAC is 90 mW with 1.2 V supply and clock frequency of 3 GHz.  相似文献   

3.
提出了一种提高16位逐次逼近(SAR)A/D转换器精度的熔丝误差修调技术。该技术用于提高A/D转换器内部核心模块—16位DAC的精度,从而达到提高整个A/D转换器精度的目的。电路采用标准CMOS工艺流片。测试结果显示,熔丝误差修调后,常温下,电路的INL为2.5 LSB,SNR为88.8 dB,零点误差EZ为1.1 LSB;修调后,A/D转换器有效位数ENOB从12.56位提高到14.46位。  相似文献   

4.
A 10-bit 200-MHz CMOS video DAC for HDTV applications   总被引:1,自引:0,他引:1  
This paper describes a 10-bit 200-MHz CMOS current steering digital-to-analog converter (DAC) for HDTV applications. The proposed 10-bit DAC is composed of a unit decoded matrix for 6 MSBs and a binary weighted array for 4 LSB’s, considering linearity, power consumption, routing area, and glitch energy. A new switching scheme for the unit decoded matrix is developed to improve linearity further. Cascade current sources and differential switches with deglitch latch improve dynamic performance. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.3 LSB and 0.2 LSB, respectively. The converter achieves a spurious-free dynamic range (SFDR) of above 55 dB over a100-MHz bandwidth and low glitch energy of 1.5 pVs. The circuit is fabricated in a 0.25 μm CMOS process and occupies 0.91 mm2. When operating at 200 M Sample/s, it dissipates 82 mW from a 3.3 V power supply.  相似文献   

5.
This work proposes a 12 b 10 MS/s 0.11 μm CMOS successive-approximation register ADC based on a C-R hybrid DAC for low-power sensor applications. The proposed C-R DAC employs a 2-step split-capacitor array of upper seven bits and lower five bits to optimize power consumption and chip area at the target speed and resolution. A VCM-based switching method for the most significant bit and reference voltage segments from an insensitive R-string for the last two least significant bits minimize the number of unit capacitors required in the C-R hybrid DAC. The comparator accuracy is improved by an open-loop offset cancellation technique in the first-stage pre-amp. The prototype ADC in a 0.11 μm CMOS process demonstrates the measured differential nonlinearity and integral nonlinearity within 1.18 LSB and 1.42 LSB, respectively. The ADC shows a maximum signal-to-noise-and-distortion ratio of 63.9 dB and a maximum spurious-free dynamic range of 77.6 dB at 10 MS/s. The ADC with an active die area of 0.34 mm2 consumes 1.1 mW at 1.0 V and 10 MS/s, corresponding to a figure-of-merit of 87 fJ/conversion-step.  相似文献   

6.
This paper presents a high-speed, low-glitch, and low-power design for a 10-bit binary-weighted current-steering digital-to-analog converter (DAC). Instead of using large input buffers to drive a lot of current switches and re-timing latches, the proposed design uses variable-delay buffers with a compact layout to compensate for the delay difference among different bits, and to reduce glitch energy from 132 to 1.36 pV s during major code transitions. The measured spurious free dynamic range (SFDR) has been improved over 10 dB, as compared to DACs without variable-delay buffers. At 250 MS/s update rate, the proposed DAC achieves 56 dB SFDR for 0.67 MHz output frequency and 49 dB SFDR for 94 MHz output frequency with 50 Ω termination. For static performance, the measured integral nonlinearity (INL) and differential nonlinearity (DNL) is less than 1.6 and 1.8 LSB, respectively. The proposed DAC can be used in various applications in industry, including digital video, digital TV, wireless communication system, etc. This chip was implemented in TSMC 1P6M 0.18 μm CMOS technology and dissipates 19 mW from a single 1.8 V power supply.  相似文献   

7.
In this article, a digital to analogue converter (DAC) based on multi-weighted current sources is proposed. This research requires only three kinds of current sources for a 6-bit DAC. The proposed DAC is implemented by 0.18?µm CMOS technology. The post-layout simulations of integral nonlinearity and differential nonlinearity are 0.076 and 0.099?LSB, respectively. The core area of the chip is 640?µm2. The DAC consumes 3.5?mW at the sample rate of 1.6?GHz with a supply voltage of 1.8?V. The specifications of the proposed DAC make it suitable for a portable device.  相似文献   

8.
A 14-bit intrinsic accuracy Q2 random walk CMOS DAC   总被引:1,自引:0,他引:1  
In this paper, a 14-bit, 150-MSamples/s current steering digital-to-analog converter (DAC) is presented. It uses the novel Q2 random walk switching scheme to obtain full 14-bit accuracy without trimming or tuning. The measured integral and differential nonlinearity performances are 0.3 and 0.2 LSB, respectively; the spurious-free dynamic range is 84 dB at 500 kHz and 61 dB at 5 MHz. Running from a single 2.7-V power supply, it has a power consumption of 70 mW for an input signal of 500 kHz and 300 mW for an input signal of 15 MHz. The DAC has been integrated in a standard digital single-poly, triple-metal 0.5-μm CMOS process. The die area is 13.1 mm2  相似文献   

9.
《Microelectronics Journal》2015,46(9):848-859
The Column-Parallel Overlapping-Subrange Successive-Approximation-Register Analog-to-Digital Converter (CPOSSAR ADC) uses a 5-bit split capacitor DAC twice to achieve 9-bit resolution. Its total capacitor area is only 3% of a 9-bit binary weighted DAC and the average switching power is only 12% of a conventional 9-bit DAC. The ADC can perform a 9-bit conversion by first digitizing the 4 most significant bits (MSB) in a coarse conversion stage and then digitizing the 5 least significant bits (LSB) in a fine conversion stage. The accuracy requirement of the DAC is reduced by using overlapping subranges. The proposed ADC achieved an SFDR of 73.6 dB and a SINAD of 55 dB in post-layout simulation, corresponding to an ENOB of 8.8 bits. The design was fabricated in a TSMC׳s 0.35 μm high-voltage process. The use of overlapping subranges reduced the DNL error from +5.14/−1 LSB to +1.27/−0.92 LSB, and improved the INL error from +5.35/−5.34 LSB to +3.17/−3.18 LSB. At a sampling rate of 1.1 MS/s the ADC achieved 41.5 dB SFDR, 34.2 dB SINAD, and consumed 242 μW/channel dynamic power. An individual ADC channel is only 22 μm wide. COPSSAR ADCs are a factor of 4, 2, and 2.5 more area efficient than Multiple-ramp Single-slope ADCs, SAR ADCs, and Cyclic ADCs.  相似文献   

10.
一种基于0.35μm CMOS工艺的14位100MSPS DAC设计   总被引:1,自引:0,他引:1  
基于 TSMC 0 .3 5μm CMOS工艺设计了一种工作电压为 3 V/ 5 V的 1 4位 1 0 0 MSPS DAC。 1 4位DAC在 5 0 Ω负载条件下满量程电流可达 2 0 m A,当采样速率为 1 0 0 MHz时 ,5 V电源的满量程条件下功耗为1 90 m W,而 3 V时的相应功耗为 45 m W该 DAC的积分非线性误差 ( IN L )为± 1 .5 LSB,微分非线性误差( DN L)为± 0 .75 LSB。在 1 2 5 MSPS,输出频率为 1 0 MHz条件下的无杂波动态范围 ( SFDR)为 72 d Bc。  相似文献   

11.
In this paper a 12-bit Nyquist current-steering digital-to-analog converter (DAC) is implemented using TSMC 0.35 μm standard CMOS process technology. The proposed DAC is an essential part in baseband section of wireless transmitter circuits. Using oversampling ratio (OSR) for it leads to avoid use of an active analog reconstruction filter. The optimum segmentation (75%) has been used to get the best DNL and reduce glitch energy. This segmentation ratio guarantees the monotonicity. Higher performance is achieved using a new 3D thermometer decoding method which reduces the area, power consumption and the number of control signals of the digital section. Using two digital channels in parallel, helps reach 1 GHz sampling frequency. Simulations indicate that the DAC has an accuracy better than 10.7-bit for upcoming higher data rate standards (IEEE 802.16 and 802.11n), and a spurious-free-dynamic-range (SFDR) higher than 64 dB in whole Nyquist frequency band. The post layout four corner Monte-Carlo simulated INL is better than 0.74 LSB while simulated DNL is better than 0.49 LSB. The analog voltage supply is 3.3 V while the digital part of the chip operates with only 2.4 V. Total power consumption in Nyquist rate measurement is 144.9 mW. Active area of chip is 1.37 mm2.  相似文献   

12.
本文简要介绍了目前国际上GaAs超高速D/A转换器的研制情况。在详细分析了几种常用类型D/A转换电路工作原理的基础上,结合现有GaAs VHSIC的制作工艺条件,设计并制作了一种4位单片集成GaAs MESFET D/A转换电路。测试结果表明,该电路分辨率为4位,转换速率办1Gs/s,建立时间小于1.0ns,微分线性误差小于±1/2LSB,功耗约为20mW。  相似文献   

13.
针对OLED显示面板更高分辨率、更高精度的需求,本文提出了一种应用于高分辨率AMOLED源极驱动的高精度10bit DAC结构。设计的DAC由6bit的GAMMA校正电阻串DAC及4bit的基于尾电流源插值的输出缓冲器级联构成,达到高精度的同时占用较小的芯片面积。为进一步提高AMOLED驱动的灰阶电压精度,增加了一个DAC斜率可编程单元对线性DAC输出曲线进行进一步调节,以更好地拟合AMOLED显示屏所需的灰阶-电压曲线,此外,输出缓冲器采用尾电流源插值的方法来实现高精度的第二级DAC。在UMC 80nm CMOS工艺下,仿真结果表明设计的DAC的最大INL和DNL分别为0.47LSB、0.24LSB。在10kΩ电阻及30pF电容负载下,DAC电压从最低灰阶到最高灰阶的建立时间为3.38μs。驱动电路可以快速、精确地将图像数据转换为建立在像素电路上的电压,满足分辨率为1080×2 160驱动芯片的应用需求。  相似文献   

14.
基于新型的低压与温度成正比(PTAT)基准源和PMOS衬底驱动低压运算放大器技术,采用分段温度计译码结构设计了一种1.5V8位100MS/s电流舵D/A转换器,工艺为TSMC0.25μm2P5MCMOS。当采样频率为100MHz,输出频率为20MHz时,SFDR为69.5dB,D/A转换器的微分非线性误差(DNL)和积分非线性误差(INL)的典型值分别为0.32LSB和0.52LSB。整个D/A转换器的版图面积为0.75mm×0.85mm,非常适合SOC的嵌入式应用。  相似文献   

15.
This paper presents a pipelined analog to digital converter (ADC) with reconfigurable resolution and sampling rate for biomedical applications. Significant power saving is achieved by turning off the sample-and-hold stage and the first two pipeline stages of the ADC instead of turning off the last two stages. The reconfiguration scheme allows having three modes of operation with variable resolutions and sampling rates. Reconfigurable operational transconductance amplifiers and an interference elimination technique have been employed to optimize power-speed-accuracy performance in biomedical instrumentation. The proposed ADC exhibits a 56.9 dB SNDR with 35.4 mW power consumption in 10-bit, 40 MS/s mode and 49.2 dB SNDR with only 7.9 mW power consumption in 8-bit, 2.5 MS/s mode. The area of the core layout is 1.9 mm2 in a 0.35 μm bulk-CMOS process.  相似文献   

16.
In this paper, an ultra-low-power successive approximation register analog-to-digital converter (ADC) for energy limited applications is presented. The ADC resolution is enhanced by using a noise-shaping technique which does not need any integrator and only uses a finite impulse response (FIR) filter. To provide a first-order noise-shaping, the quantization error is firstly extracted by using the digital-to-analog converter (DAC) dummy capacitor and it is then employed in the error feedback scheme. The proposed structure employs a low-gain and low-swing operational transconductance amplifier (OTA) to realize the FIR filter which operates only at the sampling phase. To minimize the power consumption of the ADC analog part, the OTA is powered off during the conversion phase. The proposed ADC is designed and simulated in a 90 nm CMOS technology using Spectre with a 0.5 V single power supply. The simulated ADC uses a fully-differential 8-bit charge redistribution DAC with an oversampling ratio of 8 and achieves 10.7-bit accuracy. The simulated average power consumption is 4.53 μW and the achieved maximum SNDR and SFDR are 66.1 and 73.1 dB, respectively, resulting in a figure of merit of 27.6 fJ/conversion-step.  相似文献   

17.
设计了一个14位刷新频率达400MHz,用于高速频率合成器的低功耗嵌入式数模转换器。该数模转换器采用5+4+5分段式编码结构,其电流源控制开关输出驱动级采用归零编码以提高DAC动态特性。该数模转换器核采用0.18μm1P6M混合信号CMOS工艺实现,整个模块面积仅为1.1mm×0.87mm。测试结果表明,该DAC模块的微分非线性误差是-0.9~+0.5LSB,积分非线性误差是-1.4~+1.3LSB,在400MHz工作频率下,输出信号频率为80MHz时的无杂散动态范围为76.47dB,并且功耗仅为107.2mW。  相似文献   

18.
A low-distortion feed-forward MASH24b-24b sigma–delta analog-to-digital converter (ADC) for wireless local area network (WLAN) applications was presented. The converter exhibits improved performances than the ADCs which have been presented to date by adding a feedback factor in the second stage and employing a 2nd-order noise-shaping dynamic element matching (DEM) scheme. The feedback factor induces a zero in the noise transfer function (NTF) and therefore improves the in-band signal to noise and distortion ratio (SNDR) of the modulator. The mismatch-shaping DEM was introduced and applied to the 4-bit DACs in this paper to improve the resolution and linearity of the ADC. Fabricated in a 0.18 μm CMOS process with single 1.8 V supply voltage, the converter achieves a peak SNDR of 85.4 dB over a 10 MHz bandwidth which implies an effective number of bits (ENOB) of 13.90-bit. The spurious free dynamic range (SFDR) is –94 dB for a 1.25 MHz@–6dBFS input signal at 160 MHz sampling frequency. The occupied area is 0.44 mm2 and dissipation power 23.4 mW.  相似文献   

19.
This paper reports the post-layout dynamic performance of a novel calibration technique for current-steering digital-to-analog converter that was proposed previously. This technique not only improves the linearity, but it does so with low power as well as a very low area. It uses an analog feedback loop consisting of four transistors to calibrate each bit of the DAC, and the same feedback circuit is used for all the bits, thus significantly saving the chip area. Layout of the 10-bit calibrated CS DAC circuit was done in a 180-nm technology; the total area of the DAC and the calibration circuit together was 0.16 \(\hbox {mm}^{2}\). Simulation results show that the spurious free dynamic range is 62 dB for signals of 1 MHz at a sampling frequency of 100 MS/s.  相似文献   

20.
A 10-bit 250-MS/s binary-weighted current-steering DAC   总被引:3,自引:0,他引:3  
This paper studies the impact of segmentation on current-steering digital-to-analog converters (DACs). Segmentation may be used to improve the dynamic behavior of the converter but comes at a cost. A method for reducing the segmentation degree is given. The presented chip, a 10-bit binary-weighted current-steering DAC, has >60 dB SFDR at 250 MS/s from DC to Nyquist. At 62.5 MHz signal frequency and 250 MS/s, we operated the device in 9-bit unary, 1-bit binary-weighted mode. The obtained 60 dB SFDR in this measurement demonstrates that the binary nature of the converter did not limit the SFDR. The chip draws 4 mW from a dual 1.5 V/1.8 V supply plus load currents. The active area is less than 0.35 mm/sup 2/ in a standard 1P-5M 0.18-/spl mu/m 1.8-V CMOS process. Both INL and DNL are below 0.1 LSB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号