首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The growth behavior of interfacial intermetallic compounds (IMCs) of SnAgCu/Cu soldered joints was investigated during the reflow process, isothermal aging, and thermal cycling with a focus on the influence of these parameters on growth kinetics. The SnAgCu/Cu soldered joints were isothermally aged at 125°C, 150°C, and 175°C while the thermal cycling was performed within the temperature ranges from −25°C to 125°C and −40°C to 125°C. It was observed that a Cu6Sn5 layer formed, followed by rapid coarsening at the solder/Cu interface during reflowing. The grain size of the interfacial Cu6Sn5 was found to increase with aging time, and the morphology evolved from scallop-like to needle-like to rod-like and finally to particles. The rod-like Ag3Sn phase was formed on the solder side in front of the previously formed Cu6Sn5 layer. However, when subject to an increase of the aging time, the Cu3Sn phase was formed at the interface of the Cu6Sn5 layer and Cu substrate. The IMC growth rate increased with aging temperature for isothermally aged joints. During thermal cycling, the thickness of the IMC layer was found to increase with the number of thermal cycles, although the growth rate was slower than that for isothermal aging. The dwell time at the high-temperature end of the thermal cycles was found to significantly influence the growth rate of the IMCs. The growth of the IMCs, for both isothermal aging and thermal cycling, was found to be Arrhenius with aging temperature, and the corresponding diffusion factor and activation energy were obtained by data fitting. The tensile strength of the soldered joints decreased with increasing aging time. Consequently, the fracture site of the soldered joints migrated from the solder matrix to the interfacial Cu6Sn5 layer. Finally, the shear strength of the joints was found to decrease with both an increase in the number of thermal cycles and a decrease in the dwell temperature at the low end of the thermal cycle.  相似文献   

2.
The interfacial interaction between Cu substrates and Sn-3.5Ag-0.7Cu-xSb (x = 0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0) solder alloys has been investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was used to measure the thickness of the intermetallic compound (IMC) layer and observe the microstructural evolution of the solder joints. The IMC phases were identified by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometry (XRD). The growth of both the Cu6Sn5 and Cu3Sn IMC layers at the interface between the Cu substrate and the solder fits a power-law relationship with the exponent ranging from 0.42 to 0.83, which suggests that the IMC growth is primarily controlled by diffusion but may also be influenced by interface reactions. The activation energies and interdiffusion coefficients of the IMC formation of seven solder alloys were determined. The addition of Sb has a strong influence on the growth of the Cu6Sn5 layer, but very little influence on the formation of the Cu3Sn IMC phase. The thickness of the Cu3Sn layer rapidly increases with aging time and temperature, whereas the thickness of the Cu6Sn5 layer increases slowly. This is probably due to the formation of Cu3Sn at the interface between two IMC phases, which occurs with consumption of Cu6Sn5. Adding antimony to Sn-3.5Ag-0.7Cu solder can evidently increase the activation energy of Cu6Sn5 IMC formation, reduce the atomic diffusion rate, and thus inhibit excessive growth of Cu6Sn5 IMCs. This study suggests that grain boundary pinning is one of the most important mechanisms for inhibiting the growth of Cu6Sn5 IMCs in such solder joints when Sb is added.  相似文献   

3.
The influence of Cu content and added Ni on the morphology of the intermetallic compound (IMC) layer formed at the interface between liquid Sn-Cu-based solders and a Cu substrate and on the strength of simulated solder joints was investigated. The reaction of a Sn-0.7Cu alloy with the substrate led to the formation of a thin layer of Cu6Sn5 (η-phase) with typical scallop morphology that did not grow with longer reaction times. Higher Cu content such as in the Sn-1.4Cu alloy led to extensive growth with increased reaction time; at long reaction times, Cu3Sn (ε-phase) was observed at the interface between the Cu substrate and the Cu6Sn5 layer. A small nickel addition to the Sn-0.7Cu alloy significantly changed the IMC morphology, accelerated its growth kinetics, prevented formation of the Cu3Sn layer, and reduced the rate of substrate dissolution.  相似文献   

4.
Cu6Sn5 and Cu3Sn are common intermetallic compounds (IMCs) found in Sn–Ag–Cu (SAC) lead-free solder joints with OSP pad finish. People typically attributed the brittle failure to excessive growth of IMCs at the interface between the solder joint and the copper pad. However, the respective role of Cu6Sn5 and Cu3Sn played in the interfacial fracture still remains unclear. In the present study, various amounts of Ni were doped in the Sn–Cu based solder. The different effects of Ni concentration on the growth rate of (Cu, Ni)6Sn5/Cu6Sn5 and Cu3Sn were characterized and compared. The results of characterization were used to evaluate different growth rates of (Cu, Ni)6Sn5 and Cu3Sn under thermal aging. The thicknesses of (Cu, Ni)6Sn5/Cu6Sn5 and Cu3Sn after different thermal aging periods were measured. High speed ball pull/shear tests were also performed. The correlation between interfacial fracture strength and IMC layer thicknesses was established.  相似文献   

5.
Long-term, solid-state intermetallic compound (IMC) layer growth was examined in 95.5Sn-3.9Ag-0.6Cu (wt.%)/copper (Cu) couples. Aging temperatures and times ranged from 70°C to 205°C and from 1 day to 400 days, respectively. The IMC layer thicknesses and compositions were compared to those investigated in 96.5Sn-3.5Ag/Cu, 95.5Sn-0.5Ag-4.0Cu/Cu, and 100Sn/Cu couples. The nominal Cu3Sn and Cu6Sn5 stoichiometries were observed. The Cu3Sn layer accounted for 0.4–0.6 of the total IMC layer thickness. The 95.5Sn-3.9Ag-0.6Cu/Cu couples exhibited porosity development at the Cu3Sn/Cu interface and in the Cu3Sn layer as well as localized “plumes” of accelerated Cu3Sn growth into the Cu substrate when aged at 205°C and t>150 days. An excess of 3–5at.%Cu in the near-interface solder field likely contributed to IMC layer growth. The growth kinetics of the IMC layer in 95.5Sn-3.9Ag-0.6Cu/Cu couples were described by the equation x=xo+Atnexp [−ΔH/RT]. The time exponents, n, were 0.56±0.06, 0.54±0.07, and 0.58±0.07 for the Cu3Sn layer, the Cu6Sn5, and the total layer, respectively, indicating a diffusion-based mechanism. The apparent-activation energies (ΔH) were Cu3Sn layer: 50±6 kJ/mol; Cu6Sn5 layer: 44±4 kJ/mol; and total layer: 50±4 kJ/mol, which suggested a fast-diffusion path along grain boundaries. The kinetics of Cu3Sn growth were sensitive to the Pb-free solder composition while those of Cu6Sn5 layer growth were not so.  相似文献   

6.
The creep-rupture lives of Sn3.8Ag0.7Cu and Sn3.8Ag0.7Cu0.03Ce lead-free solder joints for electronic packaging were investigated, respectively. And the relationship between creep behavior and intermetallic compound (IMC: Ag3Sn, Cu6Sn5, CeSn3) particles in SnAgCu/SnAgCuCe solder joints has been obtained. Meanwhile, rare earth Ce concentration gradient and retardation effect of Ce on the IMC layer have been observed at the solder/Cu interface. Moreover, aging reaction of Sn and Cu, and the effect mechanism of rare earth Ce on two IMCs (Cu6Sn5 and Cu3Sn) are reported.  相似文献   

7.
The interfacial reactions and failure modes of the solder joints for flip-chip light emitting diode (LED) on electroless nickel/immersion gold (ENIG) and Cu with organic solderability preservatives (Cu-OSP) surface finishes were investigated in this study. The experimental results demonstrate that the interfacial reactions in the Au/Sn–Ag–Cu(SAC)/ENIG and Au/SAC/Cu systems are different but the failure mechanisms of the two types of solder joints are similar during the shear test. For the Au/SAC/ENIG system, the Au layer on the surface finish of the diodes dissolved into the molten solder and transformed into a continuous (Au, Ni)Sn4 IMC layer at the diode/solder interface during reflow and the interfacial IMC at the solder/ENIG interface is dendritic Ni3Sn4 IMC grains which are surrounded by (Au, Ni)Sn4. For the Au/SAC/Cu system, however, no IMC layers can be observed at the diode/solder interface. The interfacial IMC at the solder/Cu interface is (Cu, Au)6Sn5 and a Cu3Sn IMC layer at the (Cu, Au)6Sn5/Cu interface. Tiny (Au, Cu)Sn4 IMC grains distribute in the solder layer and surround the (Cu, Au)6Sn5 grains. For the two types of systems, the primary failure mode for the cathode is due to the broken of the Si-based insulation layer which led to a high residue stress and poor connection between the Si-based layer and the solder layer. Meanwhile, the failure of the solder joint for the anode is mainly because of the failure of the solder layer under the conductive via. The crack generally forms at this area and then propagated along the diode or the diode/solder interface.  相似文献   

8.
A detailed experimental study on the fracture mechanism of Cu–Sn intermetallic compounds (IMCs) in the Pb-free solder was presented in this paper. The growth behaviors of the Cu6Sn5 and Cu3Sn IMCs were inspected and the respective evolution pattern of their microstructures was investigated. Then, a detailed fractographic analysis on brittle fractured solder joints was conducted after the high speed ball pull test. The fracture locations in the Cu–Sn IMC layers during different periods of aging process were identified. The fracture modes of Cu6Sn5 and Cu3Sn were determined as well. Afterwards, the fracture energies of different Cu–Sn IMC materials were directly compared using the Charpy impact test with a specially designed specimen. It was found that the grain boundary of Cu3Sn is the weakest link in the Cu–Sn IMC system. Finally, based on these three parts of study, a mechanism to explain the thermal degradation of Cu–Sn IMCs was proposed.  相似文献   

9.
This study investigated the effects of adding Bi and In to Sn-3Ag Pb-free solder on undercooling, interfacial reactions with Cu substrates, and the growth kinetics of intermetallic compounds (IMCs). The amount of Sn dominates the undercooling, regardless of the amount or species of further additives. The interfacial IMC that formed in Sn-Ag-Bi-In and Sn-In-Bi solders is Cu6Sn5, while that in Sn-Ag-In solders is Cu6(Sn,In)5, since Bi enhances the solubility of In in Sn matrices. The activation energy for the growth of IMCs in Sn-Ag-Bi-In is nearly double that in Sn-Ag-In solders, because Bi in the solder promotes Cu dissolution. The bright particles that form inside the Sn-Ag-In bulk solders are the ζ-phase.  相似文献   

10.
The shear strength of ball-grid-array (BGA) solder joints on Cu bond pads was studied for Sn-Cu solder containing 0, 1.5, and 2.5 wt.% Cu, focusing on the effect of the microstructural changes of the bulk solder and the growth of intermetallic (IMC) layers during soldering at 270°C and aging at 150°C. The Cu additions in Sn solder enhanced both the IMC layer growth and the solder/IMC interface roughness during soldering but had insignificant effects during aging. Rapid Cu dissolution from the pad during reflow soldering resulted in a fine dispersion of Cu6Sn5 particles throughout the bulk solder in as-soldered joints even for the case of pure Sn solder, giving rise to a precipitation hardening of the bulk solder. The increased strength of the bulk solder caused the fracture mode of as-soldered joints to shift from the bulk solder to the solder/IMC layer as the IMC layer grew over a critical thickness about 1.2 m for all solders. The bulk solder strength decreased rapidly as the fine Cu6Sn5 precipitates coarsened during aging. As a consequence, regardless of the IMC layer thickness and the Cu content of the solders, the shear strength of BGA solder joints degraded significantly after 1 day of aging at 150°C and the shear fracture of aged joints occurred in the bulk solder. This suggests that small additions of Cu in Sn-based solders have an insignificant effect on the shear strength of BGA solderjoints, especially during system use at high temperatures.  相似文献   

11.
Growth kinetics of intermetallic compound (IMC) layers formed between the Sn-3.5Ag-5Bi solder and the Cu and electroless Ni-P substrates were investigated at temperatures ranging from 70°C to 200°C for 0–60 days. With the solder joints between the Sn-Ag-Bi solder and Cu substrates, the IMC layer consisted of two phases: the Cu6Sn5 (η phase) adjacent to the solder and the Cu3Sn (ε phase) adjacent to the Cu substrate. In the case of the electroless Ni-P substrate, the IMC formed at the interface was mainly Ni3Sn4, and a P-rich Ni (Ni3P) layer was also observed as a by-product of the Ni-Sn reaction, which was between the Ni3Sn4 IMC and the electroless Ni-P deposit layer. With all the intermetallic layers, time exponent (n) was approximately 0.5, suggesting a diffusion-controlled mechanism over the temperature range studied. The interface between electroless Ni-P and Ni3P was planar, and the time exponent for the Ni3P layer growth was also 0.5. The Ni3P layer thickness reached about 2.5 μm after 60 days of aging at 170°C. The activation energies for the growth of the total Cu-Sn compound layer (Cu6Sn5 + Cu3Sn) and the Ni3Sn4 IMC were 88.6 kJ/mol and 52.85 kJ/mol, respectively.  相似文献   

12.
Cu6Sn5 and Cu3Sn are easily formed at the interface between Sn and Cu during reflow and aging processes. Thick Cu-Sn compounds at the interface become brittle, reducing the mechanical strength of solder joints and increasing the consumption of under bump metallization (UBM). It is noted that intermetallic compound (IMC) growth and substrate consumption are affected by factors such as substrate fabrication, substrate orientation, and substrate microstructure. In this study, to determine the effects of substrate grain size on IMC growth and substrate consumption, pure Sn solder was reflowed on annealed Cu substrates with different grain sizes at 250°C for 30 s to 600 s. It was revealed that Cu substrates with smaller grain sizes exhibited reduced IMC growth. In addition, the interdiffusion coefficients of Cu6Sn5 and Cu3Sn were decreased for the Cu substrate with the smaller grain size. The influence of the Cu substrate grain size on IMC growth and substrate consumption is discussed.  相似文献   

13.
Growth of intermetallic compounds (IMC) at the interface of Sn–2.0Ag–2.5Zn solder joints with Cu, Ni, and Ni–W substrates have been investigated. For the Cu substrate, a Cu5Zn8 IMC layer with Ag3Sn particles on top was observed at the interface; this acted as a barrier layer preventing further growth of Cu–Sn IMC. For the Ni substrate, a thin Ni3Sn4 film was observed between the solder and the Ni layer; the thickness of the film increased slowly and steadily with aging. For the Ni–W substrate, a thin Ni3Sn4 film was observed between the solder and Ni–W layer. During the aging process a thin layer of the Ni–W substrate was transformed into a bright layer, and the thickness of bright layer increased with aging.  相似文献   

14.
《Microelectronics Reliability》2014,54(12):2944-2950
Conductive adhesives play a major role in the electronic packaging industry as an alternative to solder due to their potential advantages that include mild processing conditions and superior thermo-mechanical performance. In a conductive adhesive interconnection, adequate mechanical and electrical performance and long-term reliability are critical.In this paper, the reliability of solderable isotropic conductive adhesive (ICA) interconnections was investigated. Reliability testing was performed via thermal shock (−55 to 125 °C, 1000 cycles) and high-temperature and high-humidity tests (85 °C, 85% RH, 1000 h). The interfacial microstructure of the solderable ICA was also investigated. Additionally, the fracture mode was investigated via mechanical pull strength testing before and after the reliability test. The electrical resistance of the solderable ICA interconnection showed improved stability compared to conventional ICAs, and similar stability to conventional solder paste (Sn–3Ag–0.5Cu and Sn–58Bi) due to the metallurgical interconnection formed by the molten LMPA fillers between the corresponding metallization layers. After the reliability tests, the grown IMC layer was composed of Cu6Sn5 (η-phase) and Cu3Sn (ε-phase), and the scallop-type IMC transformed into a layer-type IMC. The fracture propagated along the Cu–Sn IMC/SnBi interface and the fracture surface showed a semi-brittle fracture mode mixed with cleavage and ductile tear bands.  相似文献   

15.
The growth kinetics of an intermetallic compound (IMC) layer formed between Sn-3.5Ag-0.5Cu (SAC) solders and Cu-Zn alloy substrates was investigated for samples aged at different temperatures. Scallop-shaped Cu6Sn5 formed after soldering by dipping Cu or Cu-10 wt.%Zn wires into the molten solder at 260°C. Isothermal aging was performed at 120°C, 150°C, and 180°C for up to 2000 h. During the aging process, the morphology of Cu6Sn5 changed to a planar type in both specimens. Typical bilayer of Cu6Sn5 and Cu3Sn and numerous microvoids were formed at the SAC/Cu interfaces after aging, while Cu3Sn and microvoids were not observed at the SAC/Cu-Zn interfaces. IMC growth on the Cu substrate was controlled by volume diffusion in all conditions. In contrast, IMC growth on Cu-Zn specimens was controlled by interfacial reaction for a short aging time and volume diffusion kinetics for a long aging time. The growth rate of IMCs on Cu-Zn substrates was much slower due to the larger activation energy and the lower layer growth coefficient for the growth of Cu-Sn IMCs. This effect was more prominent at higher aging temperatures.  相似文献   

16.
The intermetallic compound (IMC) evolution in Cu pad/Sn-Ag-Cu solder interface and Sn-Ag-Cu solder/Ni pad interface was investigated using thermal shock experiments with 100-μm-pitch flip-chip assemblies. The experiments show that low standoff height of solder joints and high thermomechanical stress play a great role in the interfacial IMC microstructure evolution under thermal shock, and strong cross-reaction of pad metallurgies is evident in the intermetallic growth. Furthermore, by comparing the IMC growth during thermal aging and thermal shock, it was found that thermal shock accelerates IMC growth and that kinetic models based on thermal aging experiments underpredict IMC growth in thermal shock experiments. Therefore, new diffusion kinetic parameters were determined for the growth of (Cu,Ni)6Sn5 using thermal shock experiments, and the Cu diffusion coefficient through the IMC layer was calculated to be 0.2028 μm2/h under thermal shock. Finite-element models also show that the solder stresses are higher under thermal shock, which could explain why the IMC growth is faster and greater under thermal shock cycling as opposed to thermal aging.  相似文献   

17.
The effects of Zn (1 wt.%, 3 wt.%, and 7 wt.%) additions to Sn-3.5Ag solder and various reaction times on the interfacial reactions between Sn-3.5Ag-xZn solders and Cu substrates a during liquid-state aging were investigated in this study. The composition and morphological evolution of interfacial intermetallic compounds (IMCs) changed significantly with the Zn concentration and reaction time. For the Sn-3.5Ag-1Zn/Cu couple, CuZn and Cu6Sn5 phases formed at the interface. With increasing aging time, the Cu6Sn5 IMC layer grew thicker, while the CuZn IMC layer drifted into the solder and decomposed gradually. Cu5Zn8 and Ag5Zn8 phases formed at the interfaces of Sn-3.5Ag-3Zn/Cu and Sn-3.5Ag-7Zn/Cu couples. With increasing reaction time, the Cu5Zn8 layer grew and Cu atoms diffused from the substrate to the solder, which transformed the Ag5Zn8 to (Cu,Ag)5Zn8. The Cu6Sn5 layer that formed between the Cu5Zn8 layer and Cu was much thinner at the Sn-3.5Ag-7Zn/Cu interface than at the Sn-3.5Ag-3Zn/Cu interface. Additionally, we measured the thickness of interfacial IMC layers and found that 3 wt.% Zn addition to the solder was the most effective for suppressing IMC growth at the interfaces.  相似文献   

18.
The electromigration effect on interfacial reactions in Cu/90Sn-10Sb/Cu Pb-free solder joints was investigated under electric current stressing. The growth of the Cu3Sn and Cu6Sn5 intermetallic compound (IMC) layers was enhanced at the anode but inhibited at the cathode, compared with the no-current case. The growth of the IMC at the anode followed a parabolic law. Upon increasing the temperature to about 140°C, the thickness of the Cu6Sn5 IMC at the anode increased significantly. Sn3Sb2 IMC coarsened in the Cu6Sn5 IMC at the anode and in the β-Sn at the cathode. The possible mechanism of the electromigration effect is discussed.  相似文献   

19.
The effect of Ag, Fe, Au and Ni on the interfacial reactions between Sn-based solder and Cu substrate has been investigated in this paper. Based on the solubility of the alloying elements in the Sn-Cu intermetallic compound (IMC) layers these elements can be divided into two categories: (i) alloying elements that do not dissolve significantly in either Cu6Sn5 or Cu3Sn and (ii) elements that exhibit significant solubility in Cu6Sn5 and also to Cu3Sn. It is shown that the latter group of elements have stronger effect on the growth behaviour of IMC’s in the Sn-Cu system than those belonging to the first group. Of the investigated elements Ni had the most prominent effect on the growth kinetics. It reduced greatly the thickness of Cu3Sn and consequently also the total IMC layer thickness. Au had similar but markedly weaker effect. On the contrary, Fe and Ag only slightly decreased the total IMC layer thickness, and more importantly did not change the thickness ratio of Cu6Sn5 to Cu3Sn in comparison to the pure Sn-Cu system.  相似文献   

20.
The growth mechanism of intermetallics between solders and metallized substrates, after thermal aging, are investigated. The solders used in this study are unleaded Sn-Cu-Ni solder and eutectic Pb-Sn solder. The Pt-Ag/Al2O3, Cu block and the electroless Cu/Pt-Ag/Al2O3 are employed as the metallized substrates. Microstructure evolution of the interfacial morphology, elemental, and phase distribution are probed with the aid of electron-probe microanalyzer (EPMA) and x-ray diffractometry. Two kinds of intermetallics, Cu3Sn and Cu6Sn5, are formed at the solder/Cu interface. However, for the solder/Pt-Ag system, only Ag3Sn is observed at the interface. The thickness of Cu3Sn, Cu6Sn5, and Ag3Sn compound layers for all solder/metallized substrate systems shows at t0.5 dependence at 100, 125, 150 and 170 C. According to the calculated activation energy and diffusion constant, the growth rate of Cu3Sn and Cu6Sn5 intermetallics in the electroless Cumetallized substrate is relatively higher than that for Cu block one at the range of 100 C to 170 C. However, the growth rate of Cu6Sn5 and Ag3Sn is reduced in the Sn-Cu-Ni solder with respect to the eutectic Pb-Sn solder. On the other hand, the Sn-Cu-Ni solder system exhibits a thicker Cu3Sn intermetallic layer than the eutectic Pb-Sn solder after various aging times at 100 C. The thickness of Cu3Sn in the eutectic Pb-Sn solder is, however, thicker than that for Sn-Cu-Ni solder at 170 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号