首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
曲面弓形折流板换热器壳程流体流动与传热   总被引:2,自引:1,他引:1       下载免费PDF全文
钱才富  高宏宇  孙海阳 《化工学报》2011,62(5):1233-1238
提出一种新型折流板--曲面弓形折流板,并构造曲面弓形折流板换热器,采用数值模拟和实验相结合的方法研究其壳程传热和流动阻力性能。在实验方面,设计了实验用曲面弓形折流板和普通弓形折流板换热器试样,其中换热器管束采用可拆连接形式,以考察不同折流板结构和板间距的影响。通过改变管程及壳程流量和管程流体进口温度,获得了大量对应于不同折流板结构的壳程压力降和传热系数实验数据。在模拟方面,利用Fluent软件建立了曲面弓形折流板换热器和普通弓形折流板换热器流体数值分析模型,得到了壳程流体流场分布及壳程压力降和传热系数。结果发现,在相同结构参数和流动条件下,曲面弓形折流板换热器壳程压力降比普通弓形折流板换热器降低9%~24%,而壳程传热系数比普通弓形折流板换热器提高3%~11%。  相似文献   

2.
《山东化工》2021,50(16)
通过数值模拟的方法,对相同螺距下不同螺旋角的六片式螺旋折流板换热器的壳程性能进行了研究,结果表明,在研究范围内,同螺距的六片式换热器的压降随着螺旋角的增大而减小,壳程传热系数基本不变,总体性能则呈上升趋势。其中12°螺旋角的六片式换热器壳程总体性能比6°螺旋角的换热器高4.4%~35.5%。经实验验证数值模拟的结果具有可靠性,可为进一步的研究和生产工作做出指导。  相似文献   

3.
螺旋折流板菱形翅片管换热器的传热与流阻性能   总被引:23,自引:6,他引:17  
引 言近年来的研究[1~ 6] 表明 ,螺旋折流板换热器的螺旋折流板使流体在壳侧呈连续柱塞状螺旋流动(即 plug流 ) ,不会出现传统折流板换热器内的流动“死区” ,并且由于旋流产生的涡与管束传热界面边界层相互作用 ,使湍流度大幅度增强 ,有利于提高壳侧传热膜系数 .PStehlik等[2 ] 对螺旋折流板换热器进行研究得出 ,相同条件下与传统弓形折流板换热器相比 ,换热器的传热系数提高 1 8倍 ,流动阻力降低 2 5 % .陈世醒等[6] 研究发现 ,对于水这样的低黏度流体 ,相同流量单位压降的壳程对流传热系数 ,螺旋折流板换热器约为普通弓形折流板换热器…  相似文献   

4.
采用CFD软件FLUENT,Standard k-ε模型,借助数值模拟方法对异形片式倾斜折流栅换热器和常规帘式折流片换热器流动传热性能进行研究,并利用场协同理论分析异形片式倾斜折流栅换热器的折流栅不同倾斜角度对壳程传热性能的影响。结果表明:壳程雷诺数在6 000—10 000范围内,同常规帘式折流片换热器相比,异形片式倾斜折流栅换热器折流栅与折流片平行排布时,壳程传热系数和综合性能分别增加12.7%—13.9%和6.4%—7.6%;折流栅和折流片交错排布时,壳程压降降低18.45%—19%,壳程综合性能略高于常规帘式折流片换热器;异形片式倾斜折流栅换热器折流栅倾斜25°时,壳程传热系数和综合性能最好,且速度场和温度场协同性最优,因此25°为异形片式倾斜折流栅换热器最优倾角。  相似文献   

5.
王斯民  肖娟  王家瑞  简冠平  文键 《化工学报》2017,68(12):4537-4544
针对现有平面螺旋折流板换热器的相邻折流板与壳体间存在的三角漏流区,提出了一种折面螺旋折流板换热器。基于实验研究分析了折面螺旋折流板换热器的螺旋角和搭接度对流动传热性能的影响,并拟合了壳程对流传热和阻力系数的实验关联式。结果表明,当壳程体积流量相同时,随着螺旋角的减小,折面螺旋折流板换热器的壳程总压降增加,壳程管束压降增加,壳程膜传热系数提升,综合性能增强;相同壳程体积流量下,随着搭接度的增加,壳程总压降也增加,壳程膜传热系数增加,综合性能提高。实验研究表明螺旋角18°、搭接度50%的折面螺旋折流板换热器流动传热性能最佳。将折面螺旋折流板换热器的螺旋角和搭接度作为修正因子拟合到了实验关联式中,对比发现实验值与Nu实验关联式计算值的平均相对误差为1.13%,与f实验关联式的平均相对误差为6.84%,说明了拟合的正确性和可靠性。研究结果为折面螺旋折流板换热器的设计提供了理论指导。  相似文献   

6.
针对现有平面螺旋折流板换热器的相邻折流板与壳体间存在的三角漏流区,提出了一种折面螺旋折流板换热器。基于实验研究分析了折面螺旋折流板换热器的螺旋角和搭接度对流动传热性能的影响,并拟合了壳程对流传热和阻力系数的实验关联式。结果表明,当壳程体积流量相同时,随着螺旋角的减小,折面螺旋折流板换热器的壳程总压降增加,壳程管束压降增加,壳程膜传热系数提升,综合性能增强;相同壳程体积流量下,随着搭接度的增加,壳程总压降也增加,壳程膜传热系数增加,综合性能提高。实验研究表明螺旋角18°、搭接度50%的折面螺旋折流板换热器流动传热性能最佳。将折面螺旋折流板换热器的螺旋角和搭接度作为修正因子拟合到了实验关联式中,对比发现实验值与Nu实验关联式计算值的平均相对误差为1.13%,与f实验关联式的平均相对误差为6.84%,说明了拟合的正确性和可靠性。研究结果为折面螺旋折流板换热器的设计提供了理论指导。  相似文献   

7.
针对传统弓形折流板支撑多管束受限外流流动死区大,压降高的问题,提出新型斜百叶片折流板支撑多管束结构。通过全三维数值模拟,研究斜百叶片支撑多管束受限外流的传热和阻力特性,获得其局部流场,分析了不同斜百叶片倾角对其性能的影响。研究结果表明:斜百叶片支撑多管束受限外流流场分布均匀,流动死区小;与传统弓形折流板支撑的情况相比,压降减小17.1%~45.7%,功耗显著降低,且随斜百叶倾角减小而减小;倾角为45o时具有最优综合性能,相同压降下的传热系数比弓形折流板支撑的情况可提高25.9%。研究结果可为新型低功耗管壳式换热设备的开发和设计提供参考。  相似文献   

8.
螺旋折流板换热器在石油化工行业中的应用   总被引:1,自引:0,他引:1  
通过实验对比分析弓形折流板和螺旋折流板换热器的壳程传热与流动特性,得出单位压降条件下螺旋折流板换热器壳程对流传热系数均高于弓形折流板换热器;当壳程流量相同时螺旋折流板换热器壳程压降远低于弓形折流板换热器,随着流量的增加二者相差越大.结果表明螺旋折流板具有单位压降条件传热系教高,流动阻力小,能有效防止管束振动和适用范围广的优点,在石油化工领域是冷换设备较为理想的选择.  相似文献   

9.
交错螺旋折流板管壳式换热器壳侧传热与阻力性能   总被引:20,自引:6,他引:14       下载免费PDF全文
对交错搭接螺旋折流板换热器壳侧的流动与传热性能进行了实验研究,着重研究了内插假管及不同螺旋角度对壳程传热和阻力的影响,并与传统弓形折流板换热器进行了对比.结果表明,假管的存在反而使传热综合性能下降,同时,在相同的壳侧流量下,螺旋折流板换热器的壳程阻力和壳侧传热系数均随螺旋角的增大而减少,且小于同样条件下弓形折流板换热器的相应值.与弓形折流板换热器相比,螺旋折流板换热器的特点是单位压降下的壳侧传热系数高.  相似文献   

10.
段振亚  沈锋  张俊梅  宋晓敏  曹兴 《化工学报》2016,67(Z1):232-238
为了增加大螺旋角下单位长度换热管上螺旋折流板数量提高换热,提出三螺旋折流板导流结构,对设置三螺旋折流板后壳程流体的流动与传热进行了数值模拟,重点考察了Reynolds数Re=1391~4174时的壳程压降及对流传热系数,与设置单螺旋折流板的对比结果表明:三螺旋折流板换热器壳程对流传热系数高27.9%,JF因子高13.67%,综合传热性能更好。在此基础上运用耗散理论分析了三螺旋折流板采取不同螺旋角时对换热效率的影响,发现由传热引起的耗散率随Reynolds数变化规律与壳程对流传热系数随Reynolds数的变化规律类似,相同流量条件下螺旋角为64.8°的换热器耗散率最小。另外,中心换热管与壳壁附近换热管的传热系数比较结果显示,中心管热交换量均低于壳壁附近换热管热交换量。  相似文献   

11.
双螺旋结构螺旋折流板换热器试验研究   总被引:1,自引:0,他引:1  
螺旋折流板换热器中壳程的流动方式与单弓形结构下具有很大的差别,在采用扇形板拼接而成的螺旋折流板结构中采用双螺旋结构来布置更多的折流板,减少流体在扇形板拼接处的漏流,使壳程流体流动更接近于平推流.分别以重柴油和水作为壳程介质,对普通螺旋折流板以及双螺旋结构螺旋折流板的传热性能、阻力性能进行试验研究,发现双螺旋结构在相同Re时,阻力提高9.9%和6.15%,Nu提高14.12%和11.72%,同时可以增大单位压降的Nu.  相似文献   

12.
为了研究双螺旋结构对螺旋折流板换热器性能的影响及其与单螺旋结构的比较,利用热态试验和数值模拟方法,研究了四分之一扇形和三分之一扇形螺旋折流板换热器单、双螺旋结构的壳程传热和阻力性能.热态试验结果表明,单、双螺旋结构的壳程传热系数和压力损失均随流量的增大而提高.在相同流量下,双螺旋结构的壳程传热系数高于单螺旋结构,同时其壳程压力损失也有所增大.但随着流量的增加,双螺旋结构对应的单位压降下的传热性能与单螺旋基本一致.这说明双螺旋结构可以提高壳程传热性能,同时不会影响换热器的综合性能.因此在流体输送动力允许的条件下,双螺旋结构有利于设备处理能力的提高.数值模拟结果表明,由于折流板数量是单螺旋结构的两倍,因此双螺旋结构对壳程流体具有更强的导流作用,流体的分布更加均匀,且呈现出更加强烈的旋转运动.  相似文献   

13.
新型板壳式换热器壳程流动与换热的数值模拟   总被引:1,自引:0,他引:1  
陈武滨  江楠 《化学工程》2012,40(1):30-34
提出一种新型的板壳式换热器,建立2种不同板束截面形式的换热器模型,利用FLUENT软件对壳程流体的流动和换热进行数值模拟,从多个方面对板壳式换热器壳程湍流流动与强化传热进行了探讨。模拟结果表明,由于换热板片特殊的蜂窝结构,靠近板片壁面的流体产生了明显的周期性波浪式流动,这种流动加剧了流体的湍流强度及边界层的扰动,起到了壳程强化传热的效果。对于2种不同截面形式的换热器,圆形截面形式的换热器壳程空间利用率较高,流体流动充分,热交换效果更好,在同流量下,其壳程对流换热系数比方形截面形式的高35%—40%,压降高17%—19%,单位压降下的壳程对流换热系数高15%—19%。该数值模拟结果对板壳式换热器的研究具有一定的理论意义和工程实用价值。  相似文献   

14.
目前普遍使用的螺旋折流板换热器壳程的一个螺距主要采用4块平面折流板结构,但在相邻两块折流板的直边搭接处存在顶角相对的两个三角漏流区,使壳程流体偏离理想的螺旋流,严重影响了换热器的性能。采用折面折流板结构,可以封闭原始折流板之间的外侧三角漏流区,使壳程流体更接近连续的螺旋流动。实验结果表明,采用折面折流板代替原始的平面折流板后,换热器总传热系数增加6.7%~19.1%,平均增大16.9%,表明此折面折流板能有效提高螺旋折流板换热器的换热性能。虽然壳程压降也随之增大,但带来的泵耗功率增量非常有限。换热器的热性能因子均大于1.0,平均值为1.071,表明结构改进后的换热器,其综合性能平均提高7.1%。基于实验数据,拟合了结构改进前后的换热器壳程传热系数和阻力系数的相关实验关联式。研究结果对于换热器的节能优化具有重要的指导意义。  相似文献   

15.
帘式折流片换热器强化传热数值研究   总被引:1,自引:0,他引:1  
为解决折流板换热器壳程流体阻力过大和折流杆换热器低Re下传热系数较小等管壳式换热器的不足,提出了壳程流体"斜向流"的新概念,研制了新型高效节能管壳式换热器?帘式折流片换热器,其壳程传热系数高于折流杆换热器20%~30%,而壳程压力损失大幅低于折流板换热器。以场协同原理分析了斜向流的强化传热机理,指出在帘式折流片换热器壳程中流体速度场与温度梯度场间的夹角小于折流杆换热器,是其强化传热的重要原因。对帘式折流片换热器中折流栅间距、折流片倾角、折流片宽度等重要几何参数对传热和压降的影响规律进行了数值模拟研究,并据此推导了壳程传热系数和流体阻力降准数关联式,为其工程设计和推广应用提供了参考依据。  相似文献   

16.
介绍了扭曲管换热器的结构特点、强化传热机理,总结了关于扭曲管换热器管程以及壳程流场的分析,同时介绍了相关分析方法和研究成果,同时从换热器设计制造的角度,对目前已有的扭曲管换热器管程、壳程传热计算公式进行了总结和分析,在扭曲椭圆管换热器目前研究状况的基础上,介绍了某厂采用扭曲椭圆管凝汽器的运行效果,结果表明:在一定情况下,扭曲管换热器的冷凝换热效果同样优于传统的折流板换热器,具有很好的推广应用前景。  相似文献   

17.
搭接方式对螺旋折流板换热器壳程性能的影响   总被引:1,自引:2,他引:1       下载免费PDF全文
曹兴  杜文静  汲水  程林 《化工学报》2011,62(12):3367-3372
对螺旋折流板换热器进行了数值模拟,研究了相同螺距下搭接方式对壳程流动与传热性能的影响。结果表明,壳程传热系数与压降均随搭接量的增大而减小,且后者降低的幅度大于前者;连续搭接时三角区漏流增大了中心区域横向和纵向冲刷管束的速度,但整体分布不均匀,折流板背风侧流动较差;随搭接量的增大,边缘三角区增强了靠近壳体壁面区域的流动,改善了壳程的流场状况;折流板交错搭接时中心区域换热管热通量较连续搭接大幅降低,传热沿径向分布的不均匀性大大减轻。  相似文献   

18.
为了研究单弓形折流板的切口方向对管壳式换热器传热与流动性能的影响,文中通过建立3个不同折流板切口方向的管壳式换热器简化实体模型,运用CFD软件Fluent对管壳式换热器壳程传热与流动状态进行了三维数值模拟。以水为壳程流体介质,在不断改变壳程进口流速,使得壳程进口雷诺数Re在10 000到70 000范围内变化时,得到了不同状态下的壳程流场与温度场。根据数值模拟结果,以总传热系数α,壳程总压降Δp以及单位压降下的传热系数α/Δp作为综合衡量标准,分析不同折流板切口方向时的管壳式换热器壳程流场与温度场。数值模拟分析结果表明:折流板为垂直切口方向时,管壳式换热器总传热系数最大,压降最小,综合性能最好,另外2种折流板切口方向的管壳式换热器综合性能差不多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号