首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
魏巍 《冶金分析》2018,38(1):64-69
采用硝酸、盐酸、高氯酸分解样品,加入盐酸与银反应形成氯化银沉淀后过滤,采用铅试金重量法对沉淀中银量进行了测定,并扣除了钯产生的干扰,同时采用原子吸收光谱法(AAS)对滤液中的银量进行了测定,将沉淀与滤液中的银量相加后除以样品量得到样品中银的含量,实现了铅试金重量法联合原子吸收光谱法对银钯精矿中银的测定。考虑到在沉淀形成的过程中,氯化银沉淀对铂和钯有严重的吸附作用,因此考察了铂和钯对沉淀中银量测定的影响。试验表明,采用铅试金法对沉淀中贵金属进行捕集后,贵金属合粒中的铂对银测定的干扰可忽略不计,但钯的干扰不可忽略。实验采取用10mL硝酸(1+1)低温溶解贵金属合粒,以原子吸收光谱法测定合粒溶液中钯量,从铅试金重量法所得结果中扣除合粒中钯量的方法消除了沉淀中钯对测定的干扰。干扰试验表明,滤液中的主要共存元素钯、铜、铋、金、铂对样品中银测定的干扰可忽略不计。按照实验方法,对钯银精矿样品中银平行测定11次,相对标准偏差(RSD)为0.028%~0.059%,同时加入高纯硝酸银进行加标回收试验,回收率为98%~102%。将实验方法应用于银钯精矿样品中银的测定,其测定结果与碘化钾电位滴定法基本一致。  相似文献   

2.
准确测定铂钯精矿中银含量对其高效综合利用具有重要的指导意义。铂钯精矿中银含量高、基体复杂、测定难度大。采用铅试金预富集样品中的银,以留铅灰吹法避免银在灰吹时的损失;再用硝酸溶解铅珠,用丁二酮肟沉淀分离钯,消除钯对滴定终点颜色的干扰;最后用硫氰酸钾滴定法滴定银,建立了铅试金-硫氰酸钾滴定法测定铂钯精矿中银的分析方法。试验表明:经铅试金预富集银后,灰吹留铅量为2~3 g时可以减少银的损失;用4 mol/L硝酸消解铅珠,36 mL丁二酮肟乙醇溶液分离除去钯,能有效消除钯对测定的干扰。按照实验方法测定铂钯精矿实际样品和模拟样品中银,实际样品测定结果的相对标准偏差(RSD,n=7)为0.50%~0.72%,加标回收率为96%~101%,模拟样品的测定值与理论值吻合。  相似文献   

3.
魏巍  柴徐彬 《冶金分析》2015,35(6):8-12
采用铅试金法将铜浸出渣中的铂和钯捕集于金银合粒中,用硝酸(1+7)溶解金银合粒,倾出硝酸溶解液,用王水(1+1)溶解剩余的残渣,合并两次溶解液,加入盐酸(1+1)沉淀银,过滤,对溶液中铂和钯进行测定,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定铜浸出渣中铂和钯的分析方法。金银合粒中金和银的干扰试验表明:在沉淀过程中不断搅拌可消除氯化银沉淀对铂和钯吸附的影响,同时溶液中的金对测定不产生干扰。方法用于铜浸出渣实际样品分析,测得结果的相对标准偏差(RSD,n=11)为5.6%~9.7%,加标回收率为94%~104%。将方法应用于铜浸出渣管理样中铂和钯的测定,测定值和参考值吻合。  相似文献   

4.
贵金属多元合金废料的综合回收   总被引:1,自引:1,他引:0       下载免费PDF全文
采用合金碎化技术,实现了硝酸快速完全溶解贵金属多元合金废料中钯、银、铜等,实现了合金废料中银、钯与金、铂的高效彻底分离;采用硝酸盐蒸发热分解技术,实现了银与钯的高效彻底分离;采用控制溶液酸度、水合肼还原法实现了金与铂的高效彻底分离。合金废料中的钯、银回收率均达99%以上,金、铂回收率均达98%以上,其纯金属品位均达99.95%以上。  相似文献   

5.
系统地研究了钯(Ⅰ)在硝酸介质中与Na_2EDTA络合,再用二甲基乙二肟络合钯,三氯甲烷萃取,锌盐返滴定,连续测定钯、铜的条件。方法已用于含Pd5%~30%,含Cu5%~30%的银合金样品分析,相对误差≤士1%。  相似文献   

6.
现行的银阳极泥处理工艺铂钯直收率低,且稀贵金属物料在流程中不断富集循环,未能实现金属高效回收。研究表明:采用硝酸浸出-浸出液氯化沉银-沉银液还原铂钯-硝酸浸出渣王水分金-还原得产品金工艺处理银阳极泥,银、铂、钯硝酸浸出率分别为99.6%、82.4%和89.1%,氯化沉银率为99.9%,铂钯还原沉淀率分别为99.6%和99.8%。  相似文献   

7.
刘芳美 《冶金分析》2022,42(3):26-32
准确测定分金渣中金、银、铂和钯含量,是铜阳极泥半湿法处理工艺提银的重要技术支撑。通常稀贵金属物料如粗金或粗银中金、银的测定方法(火试金重量法)有流程长、需逐一测定、存在干扰元素铂和钯等问题,铂缺乏相应的标准分析方法,难以满足实际检测要求。实验采用火试金包铅灰吹处理样品得到含铂、钯的合粒,用称量法测定合粒质量后通过分取合粒补银灰吹,利用硝酸分金得到金粒与分金液,称取金粒质量并溶解,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定金粒和分金液中的铂和钯量并补正金和银量,建立了火试金重量法结合电感耦合等离子体原子发射光谱法测定分金渣中金、银、铂、钯的方法。试验表明:当铅箔用量为20 g,于880 ℃下灰吹可以得到圆滑的合粒,通过合粒分取均匀性试验验证了合粒中金、银、铂、钯分布是均匀的,可任意分取适量合粒进行补银。采用灰吹系数法确定当校正系数为1.01时可以实现银的有效补正。按照实验方法测定分金渣样品中的金、银、铂和钯,测定结果与标准方法YS/T 3027.1—2017测定金,标准方法YS/T 3027.2—2017测定银,电感耦合等离子体原子发射光谱法测定铂,标准方法YS/T 955.2—2014测定钯基本吻合。相对标准偏差(RSD,n=7)为0.11%~3.6%,加标回收率为95%~104%。  相似文献   

8.
铂钯矿浸出液中铂和钯的准确测定,对铂和钯的综合利用具有十分重要的意义。铂钯矿浸取液中铂和钯含量较低,且还含有大量的共存离子,若直接对铂和钯进行测定,干扰较为严重。采用铅试金法对样品中铂和钯进行分离富集,在优化仪器参数的基础上,建立了石墨炉原子吸收光谱法(GF-AAS)测定铂钯矿浸出液中铂和钯的新方法。将10 mL铂钯矿浸出液滴在试金配方凹槽内,滴入硝酸银溶液作为灰吹保护剂,再覆盖试金配方,经高温熔融和灰吹,样品中的铂和钯被富集于银合粒中。采用先加入硝酸、再加入盐酸的方式溶解银合粒,用石墨炉原子吸收光谱法进行测定,实现了对样品中铂和钯的测定。优化了铂和钯的石墨炉灰化温度和原子化温度以及原子化读数时间。在选定的优化实验条件下,铂和钯的吸光度与其对应的质量浓度运用二次方程最小二乘法拟合校准曲线,曲线拟合良好,铂和钯校准曲线的决定系数分别为0.999 8、0.999 7,特征浓度分别为2.14、0.34 ng/mL。将实验方法应用于铂钯矿浸出液中铂和钯的测定,测得结果的相对标准偏差(n=6)为2.7%~5.7%,加标回收率为84%~118%,加标回收率满足国家地质矿产行业标准DZ/T 0130—2006的要求。  相似文献   

9.
银及银合金中金的分析用硝酸使基体成分溶解,而少量金不溶,分离后再溶解残渣测定金.但由于样品不同以硝酸溶解时,尤其是金含量很低时,金可能会部份溶解损失,因此需要寻求一个能在硝酸溶液中富集微量金的方法.文献中富集微量金采用的方法,大多在盐酸介质中进行,不适用于含大量银、钯、铂及钴等的硝酸介质.作者发现在一定条件下氯化银可在硝酸溶液中与金共沉淀,本文着重研究此共沉淀的条件及硝酸溶样时影响部份金溶解的因素,并拟定出银及钯银合金中微量金的分析方法.微量金的测定仍采用灵敏、准确、选择性高的孔雀绿一醋酸丁酯萃取光度法.  相似文献   

10.
赵永周 《黄金》2006,27(5):42-45
研究了硒、铜、银、砷作为共沉淀剂。富集分离地质样品中金、铂、钯的最佳条件。在3mol/L HCl介质中,以4mg硒和5mg铜、银、砷对金、铂、钯进行共沉淀富集,采用孔雀绿分光光度法测定金.DDO分光光度法测定铂、钯,回收率均在95%-102%之间。通过对含金矿样加入铂、钯标准样品的回收实验,结果令人满意。  相似文献   

11.
铂钯合金用盐酸、硝酸溶解,采用电感耦合等离子体发射光谱法测定合金中的铑和铱。针对该合金中铂、钯所占比例不同,准确建立了铑、铱的元素分析谱线、背景干扰、仪器参数等实验条件。测定的铑、铱相对标准偏差均小于1.5%,加标后的回收率在99.83%~100.15%,分析结果令人满意。  相似文献   

12.
针对开路银电解液中铂钯浓度低、难回收的特点,研究了采用椰壳炭富集铂、钯。试验结果表明:在液固体积质量比72∶1条件下吸附120min,银电解液中铂、钯吸附率分别达98%和85%以上;在硝酸质量浓度200g/L、液固体积质量比8∶1条件下解吸80 min,负载于椰壳炭上的铂、钯的解吸率分别达86.95%和91.65%。工业试验结果表明,银电解液中铂、钯可分别富集至3.54g/L和62.12g/L,富集效果较好。  相似文献   

13.
罗荣根 《冶金分析》2014,34(11):46-50
采用硝酸-过氧化氢混合溶液分解样品,酒石酸防止锑、铋等元素水解,抗坏血酸还原后过滤并收集滤液。还原的银用硝酸-过氧化氢-酒石酸混合溶液分解,盐酸沉淀分离基体银以消除基体干扰,合并滤液,并在稀盐酸介质中,于电感耦合等离子体原子发射光谱仪(ICP-AES)上测定银中8种杂质元素(铜、铋、铁、铅、锑、钯、硒和碲)含量。通过试验,确定了适宜称样量为0.50~1.00 g。体系中残余银和共存其他杂质元素对测定结果无影响。使用不同方法对试验样品中铜、铋、铁、铅、锑、钯、硒和碲进行测定,测定结果与国标方法相符,相对标准偏差均小于5.0%。  相似文献   

14.
研究了微波马弗炉加热处理样品,火焰原子吸收光谱法测定废旧电路板中金、银、铂、钯的方法。称取5.0 g粉碎后废旧电路板样品,用微波马弗炉在550 ℃灼烧30 min分解有机物,用王水溶解样品,样品溶液中的金、银、铂、钯用火焰原子吸收光谱法进行测定。金、银、铂、钯的方法检出限分别为0.078、0.12、0.15和0.15 mg/mL;方法回收率在90%~108%之间;用本方法平行测定同一废旧电路板样品7次,日内相对标准偏差为2.2%~2.9%;日间相对标准偏差为3.3%~3.5%。将本方法用于废旧电路板分析,测得结果与微波消解-电感耦合等离子体发射光谱法一致。  相似文献   

15.
为准确、快速测定粗硒中金、银、铂、钯的含量,建立了氧化焙烧除硒、铅试金法结合电感耦合等离子体原子发射光谱法测定粗硒中金、银、铂、钯的方法。实验采用二氧化硅铺底,阶段升温至600℃,焙烧时间2 h,除硒效果较好,且不会造成金、银、铂、钯的损失;当试样量为10.0 g,试金硅酸度为1.0时,熔渣流动性良好,能够得到光滑圆润的贵金属合粒,经硝酸溶解后以盐酸沉淀分离银;选择Pt 265.945 nm、Pd 340.458 nm作为测定谱线进行电感耦合等离子体原子发射光谱法测定,铂和钯校准曲线的线性相关系数均大于0.999,检出限分别为0.002 0 mg/L和0.001 8 mg/L,测定下限分别为0.006 7 mg/L和0.006 1 mg/L。本方法测定结果的相对标准偏差(RSD,n=7)为0.47%~5.9%,加标回收率为97.3%~103.0%,准确度和精密度满足生产控制要求。  相似文献   

16.
镍钛铂合金中铂含量与合金材料的理化性能有着密切的联系,也是重要的交易指标之一。采用盐酸-硝酸混合酸以及硫酸分解样品,在加热至冒硫酸烟时,铂-硫脲络合物形成硫化物沉淀,从而与其他元素分离,经过滤,灼烧,恒重,计算得到铂含量;使用电感耦合等离子体原子发射光谱法(ICP-AES)测定滤液中铂含量,其含量很低,对样品中铂含量没有贡献,无需补差,即铂已经完全沉淀。试验结果表明,盐酸与硝酸体积比为5∶1时样品溶解速度最快;硫酸(1+1)加入总量为80mL,硫脲用量为2.0g时,铂可以沉淀完全并易于过滤。按照实验方法测定2个镍钛铂样品中铂,结果的相对标准偏差(RSD,n=10)分别为0.17%和0.12%;与氯铂酸铵重量法进行比对,并采用F检验和t检验,结果表明两种方法在显著性水平为0.10时没有显著性差异。加标回收率在99%~102%之间。  相似文献   

17.
采用过氧化钠高温熔解样品,3.0~4.5 mol/L盐酸介质中二氯化锡还原、碲共沉淀富集铂、钯,选择Pt 265.945 nm、Pd 340.458 nm作为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定石油化工废催化剂不溶渣中铂、钯的方法。样品中铂的质量浓度在2~27 μg/mL、钯的质量浓度在0.7~20 μg/mL范围内,校准曲线线性方程分别为I Pt =3 624 × ρPt-180.4和I Pd = 9 869 ×ρPd-220.9,线性相关系数R2均为0.999 98。方法中铂、钯的检出限分别为0.017 μg/mL和0.004 2 μg/mL。测定石油化工废催化剂不溶渣样品中109~1 342 g/t铂和37~977 g/t钯,结果的相对标准偏差(RSD,n=5~11)分别为1.1%~1.9%和1.1%~3.6%,测定结果与火试金富集-电感耦合等离子体原子发射光谱法的测定结果一致,铂、钯的回收率分别为99%~100%和100%。  相似文献   

18.
谢磊 《冶金分析》2018,38(12):64-68
用能量色散X射线荧光光谱仪(EDX)和X射线衍射仪(XRD)对贵铅进行扫描分析,结果表明贵铅中主要含有铅、银、铋、铁、锑、铜、砷、碲等,且银的主要物相是银锑合金、银铋合金、单质银以及银砷合金。在应用硝酸对贵铅进行溶样处理过程中发现,锑的水解会产生灰白色沉淀物,考虑到酒石酸可以和锑发生络合反应,有效防止锑的化合物水解,据此,采用硝酸-酒石酸混酸溶解样品,建立了电位滴定法测定贵铅中银的方法。对实验条件进行了优化,并对贵铅样品中的共存杂质元素进行了干扰试验,结果表明其对测定的干扰可以忽略。按照实验方法对3个贵铅样品中银进行测定,6次平行测定结果的相对标准偏差(RSD)均在0.18%~0.21%之间,加标回收率在99%~101%之间。将实验方法应用于贵铅实际样品分析,并与火试金法-重量法测定结果进行对照,二者有较好的一致性。  相似文献   

19.
贵金属氰化物体系电位—pH曲线对研究金矿氰化理论和强化氰化作业均有重要意义。 实测后发现:银、铂氰化物络离子的实测电位—pH曲线与理论曲线非常接近;金、钯氰化物络离子的理论电位—pH曲线与测定曲线相差较大,本文提出了修正曲线方程。最后对氰化作业及其强化进行了分析。 低价金、银、铂、钯氰化物体系电位—pH曲线在贵金属资料中都有记载。这些曲线对研究金矿中金、银及微量铂、钯的氰化浸出,在理论和实践上都有重要的意义。 为了检验这些曲线的准确性,我们对贵金属(金、银、铂、钯)氰化物络离子的电位—pH曲线进行了测定。为了使测定接近实际作业情况,测定液分别配制成每升含贵金属(金、银、铂、钯)氰化物络离子10~(-4)摩尔,总氰浓度[CN~-]_总=10~(-2)摩尔/升。用国产25型酸度计、贵金属(金、银、铂、钯)电极、甘汞电极、玻璃电极测定溶液的pH及电位值。  相似文献   

20.
电感耦合等离子体原子发射光谱法测定钯炭中钯   总被引:1,自引:0,他引:1       下载免费PDF全文
将样品置于马弗炉中,从室温升温至700 ℃后灼烧30 min分解活性炭,残渣用1 mL水合肼还原后、使用15 mL盐酸和5 mL硝酸溶解,待测溶液加入钇做内标,选择Pd 340.458 nm作为分析线,优化仪器测定条件,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定钯炭中钯的方法。结果表明,钯炭样品中微量共存元素对钯测定无影响。钯的质量浓度在50.00~300.00 mg/L范围内与其发射强度呈线性,相关系数r=0.999 99,方法中钯的检出限为0.015 mg/L。使用方法测定钯炭样品中钯,结果的相对标准偏差(RSD,n =11)小于1%。测定结果与丁二肟析出-EDTA络合滴定法测定结果相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号