首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, [Li0.02(Na0.56 K0.46)0.98](Nb0.81Ta0.15Sb0.04)O3 + x mol% K5.4Cu1.3Ta10O29 ceramics were fabricated by conventional solid-state solution processes. Then, their dielectric and piezoelectric properties were investigated. Sinterability of all samples was enhanced because K5.4Cu1.3Ta10O29 (abbreviated as KCT) acted as sintering aids. As the result of XRD, phase structure showed orthorhombic symmetry when KCT ≤ 0.2 mol%. Whereas, the phase structure changed from orthorhombic symmetry to tetragonal symmetry when KCT?≥?0.4 mol%. The results suggest that the orthorhombic and tetragonal phases co-exist in the composition ceramics with 0.2 mol% < KCT < 0.4 mol% at room temperature. The effects of the addition of KCT on the dielectric and piezoelectric properties were investigated. As the result, excellent properties of density=4.81[g/cm3], electromechanical coupling factor (kp)=0.48 and piezoelectric constant(d33)=252[pC/N] were obtained in the composition ceramics with 0.4 mol%KCT.  相似文献   

2.
0.94(K05Na0.5)NbO3?0.03LiNbO3?0.03LiSbO3 (KNLNS) lead-free piezoelectric ceramics were prepared by conventional mixed oxide route with normal sintering method. The samples were sintered at different temperatures with KNLNS powder atmosphere to prevent volatilization of alkali metal oxides at high temperature. The effects of sintering temperature on the density, structure and electric properties of KNLNS ceramics were studied. X-ray diffraction (XRD) results showed that the crystal structure of the crushed KNLNS ceramic powders were pure perovskite phase with tetragonal phase structure when sintered at T????1080°C. However a K3Li2Nb5O15 phase with tetragonal tungsten bronze structure began to appear when the sintering temperature was higher than 1080°C. The optimum sintering temperature was 1080°C which was determined by measuring the density of the samples. Scanning electron microscope (SEM) observation indicated that the sintering temperature had a great effect on the microstructure of the samples. The KNLNS ceramics under the optimum sintering temperature showed excellent electric properties: ???=?4.29 g/cm3, ?? r?=?826, tan???=?0.049, d 33?=?190 pC/N, k p?=?0.30, and T c?=?385°C. The results show that the KNLNS ceramics are promising candidate for lead-free piezoelectric ceramics.  相似文献   

3.
Niobate ceramics such as NaNbO3 and KNbO3 have been studied as promising Pb-free piezoelectric ceramics, but their sintering densification is fairly difficult. In the present study, highly dense Na0.5K0.5NbO3 ceramics with submicron grains were prepared using SPS, whose density was raised to 4.47 g/cm3 (>99% of the theoretical density) at 920 °C. Reasonably good ferroelectric and piezoelectric properties were obtained in the SPSed Na0.5K0.5NbO3 ceramics after annealing in air. The effect of annealing time on the electrical properties was investigated to determine optimal processing condition. The piezoelectric parameter (d 33) of the Na0.5K0.5NbO3 ceramics annealed properly reached 148 pC/N.  相似文献   

4.
(Na0.47Bi0.46Ba0.06K0.01)(Nb0.02Ti0.98-xZrx)O3 lead-free ceramics (BNBKT-xZr, x?=?0, 0.01, 0.02, 0.04) were synthesized via conventional solid state reaction method. Crystallite structure of the ceramics was studied using X-ray diffraction. The rhombohedral phase and tetragonal phase coexist in the BNBKT-xZr ceramics. The doping of Zr4+ into BNBKT lattice increases the percentage of the tetragonal phase. The size and shape of grains in the ceramics were affected by the doping of Zr4+ ions. For all the unpoled ceramics, two dielectric anomalies are observed in the dielectric constant-temperature curves. The maximum values of dielectric constant and corresponding temperatures change with the variation of Zr4+ amount. The doping of Zr4+ ions causes a decrease in the ferroelectric properties.  相似文献   

5.
Na0.5?K0.5NbO3 (KNN) ceramics were sintered at different temperatures (970 °C, 1000 °C, 1030 °C, 1060 °C, and 1090 °C) for 3 h by a pressureless sintering method. The powders had been synthesised by sol–gel method, using citric acid as a coordination agent and ethylene glycol as an esterifying agent. The effects of temperature on the phase, microstructure, dielectric, ferroelectric, and piezoelectric properties of the as-prepared ceramics were analysed. The results revealed that all of the ceramics had a pure perovskite phase with orthorhombic symmetry. The piezoelectric constant (d 33), the relative dielectric constant (ε r), the planar electromechanical coupling coefficient (K p), and the remnant polarization (P r) initially increased and then decreased with increasing of temperature in such KNN ceramics. The volatilization of sodium and potassium increased with increasing sintering temperature. Over the range of temperatures studied, those ceramics sintered at 1060 °C had the following optimal properties: (ρ?=?3.97 g/cm3, d 33?=?119 pC/N, ε r?=?362.46, tan δ?=?0.05, K p?=?0.23, P r?=?11.97 μC/cm2, E c?=?10.35 kV/cm, and T c?=?408 °C).  相似文献   

6.
In this study, to develop the optimal composition of ceramics for low loss piezoelectric actuator and ultrasonic motor applications, (K0.5Na0.5)(Nb0.97Sb0.03)O3?+?0.009 K5.4Cu1.3Ta10O29?+?0.1wt%Li2CO3?+?xwt%Bi2O3(x?=?0?~?0.9) lead-free piezoelectric ceramics with a fixed quantity of 0.009 K5.4Cu1.3Ta10O29 (abbreviated as KCT) were manufactured using the conventional solid-state solution processes. The effects of Bi2O3 addition on the dielectric and piezoelectric properties were then investigated. From the X-ray diffraction analysis result the specimens demonstrated orthorhombic symmetry when Bi2O3 was less 0.6?wt%, a pseudo-cubic phase appeared when Bi2O3 was 0.9?wt%. SEM images indicate that a small amount of Bi2O3 addition affect the microstructure. The piezoelectric properties of (K0.5Na0.5)(Nb0.97Sb0.03)O3 ceramics were greatly improved by a certain amount of Bi2O3 addition. Excellent properties of density?=?4.54?g/cm3, relative densities?=?98.5?%, k p?=?0.468, Q m?=?1,715 and d 33?=?183 pC/N were obtained with a composition of 0.3?wt% Bi2O3  相似文献   

7.
8.
(Na0.52?K0.44Li0.04)(Nb0.86Ta0.06Sb0.08)O3 (LTS-KNN) nano-powders with the size of 11–34 nm were prepared by a sol–gel method. Using the nano-powders, LTS-KNN ceramics with fine grain size of 200–400 nm and high density were fabricated by spark plasma sintering. The satisfied piezoelectricity is obtained, such as d * 33?~?481 pm/V, d 33?~?296 pC/N, K p?~?49.7 %, ε 33 T 0?~?920, tanδ?~?0.025 at 1 kHz and relative density is 99.4 %, respectively. It is shown that nano-powders are suitable to prepare fine-grained potassium-sodium niobate ceramics with satisfied properties.  相似文献   

9.
10.
In this work, composition-insensitive enhanced piezoelectric properties are achieved in (1-x)(K0.48Na0.52)0.96Li0.04(Nb0.96Sb0.04)O3-xSrZrO3 (KNN-SZ) lead-  相似文献   

11.
Lead-free [(Na0.54K0.46)0.96Li0.04](Nb0.80Ta0.20)O3(abbreviated as NKL-NT) ceramics were synthesized by conventional solid state sintering method and the effect of Co substitution on the microstructure and piezoelectric properties were investigated. The crystal structure and microstructure were investigated by X-ray diffraction (XRD) and SEM images. The crystal structure exhibited the tetragonal structure at the composition ceramics less than 1 mol% Co. However, with increasing Co substitution from 1.5 to 2.0 mol%, the ceramics showed morphotropic phase boundary (MPB) and the crystal structure of the ceramic possessed orthorhombic structure at 3 mol% Co. The grain size was increased with increasing of Co contents. The phase transition temperature tetragonal-cubic(TC) and orthorhombic-tetragonal(TO-T) were shifted to downward and upward with increasing Co contents, respectively. The high piezoelectric properties of d33?=?259[pC/N], kp?=?0.43 and Qm?=?109 were obtained from the 1.5 mol% Co substituted ceramics sintered at 1060 °C for 5 h.  相似文献   

12.
MnO2 doped (Na0.82 K0.18)0.5Bi0.5TiO3 lead-free piezoelectric ceramics were prepared by conventional solid-state reaction process and the effect of MnO2 addition on the pyroelectric, piezoelectric and dielectric properties were studied. The experiment results showed that the pyroelectric, piezoelectric, and dielectric properties strongly depended on MnO2 addition in the (Na0.82 K0.18)0.5Bi0.5TiO3 ceramics. Excellent electrical properties were obtained in (Na0.82 K0.18)0.5Bi0.5TiO3 with 0.8?mol% MnO2. The large dielectric loss of pure BNT ceramics was significantly reduced, the piezoelectric constant was improved, and it also showed excellent pyroelectric properties when compared with other lead free ceramics, with pyroelectric coefficient p?=?17?×?10?4?C/m2K and figure of merit F d ?=?6.56?×?10?5?Pa?0.5. With these outstanding pyroelectric properties, the 0.8?mol% MnO2 doped (Na0.82 K0.18)0.5Bi0.5TiO3 ceramic can be a promising material for pyroelectric sensor applications in future.  相似文献   

13.
Microwave dielectric properties of the [(Pb0.5Ca0.5)1?x La2x/3](Fe0.5Nb0.5)O3 and [(Pb0.5Ca0.5)1?x La x ](Fe0.5Nb0.5)O3 ceramics were investigated as a function of La3+ content $ {\left( {0.0 \leqslant \times \leqslant 0.2} \right)} $ . A single perovskite phase was detected in [(Pb0.5Ca0.5)1?x La2x/3](Fe0.5Nb0.5)O3, while Pb3Nb4O13 were detected as a secondary phase in [(Pb0.5Ca0.5)1?x La x ](Fe0.5Nb0.5)O3 beyond x?=?0.05 due to the excess of unbalanced charge. The amount of Pb3Nb4O13 was proportional to the unbalanced charge. Qf value of [(Pb0.5Ca0.5)1?x La2x/3](Fe0.5Nb0.5)O3 decreased remarkably with La3+ substitution due to the increase of oxygen vacancy. For [(Pb0.5Ca0.5)1?x La x ](Fe0.5Nb0.5)O3 ceramics, dielectric constant and Qf value increased with La3+ content up to x?=?0.03 due to an increase of density and grain size. Temperature coefficient of resonant frequency (TCF) was depended on B-site bond valence in single perovskite phase.  相似文献   

14.
Polycrystalline Ba(FeNb)0.5O3/BFN ceramics were sintered conventionally and in a microwave (MW) furnace, respectively. Conventional and microwave sintering temperatures were same with different soaking times. Microwave sintering of BFN ceramics showed enhanced grain growth with improved dielectric properties. Highest dielectric constant (~29,913 at 1 kHz) at room temperature (RT) was observed in BFN ceramics sintered in MW furnace for 30 min. At RT, a non-Debye type of dielectric relaxation was observed in both conventionally and MW sintered BFN ceramics. The observed giant dielectric constant of conventionally and MW sintered BFN ceramics was attributed to intrinsic (space charge polarization) and extrinsic (Maxwell-Wagner type polarization) effects, respectively.  相似文献   

15.
In this study, a series of Li0.058(K0.480Na0.535)0.966(Nb0.90Ta0.10)O3 + (x)LiF (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5 wt%) lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method. The incorporation of LiF could significantly improve the sintering ability of LKNNT ceramics by reducing the optimal sintering temperature from 1090°C to 1020°C. The crystal phases and micro-structures were analyzed by means of the X-ray diffraction and scanning electronic microscopy, respectively. The impedance analyzer was used to measure the Curie temperature, phase transition point, and electro-mechanical coupling factor. And the d33 meter was used to measure the piezoelectric constants.

From the results, due to the addition of 0.2 wt% LiF, uniform and condensed grains can be obtained and hence the sintering temperature can be lowered down. As the contents of LiF increased, the orthorhombic to tetragonal phase transition points TO-T were almost no changed, but the Curie temperature TC decreased from 425°C (x = 0) to 405°C (x = 0.5). And furthermore, the electro-mechanical coupling factor kp and piezoelectric constant d33 were all decreased with increases of LiF contents. Hence, even though the reducing of little amount of piezoelectric characteristics, the LiF addition can improve the sintering ability of the LKNNT ceramics effectively.  相似文献   


16.
In this paper, lead-free (1-x)(Bi0.5Na0.5)0.94Ba0.06TiO3-xBiAlO3 (BNBT-BA, x?=?0, 0.010, 0.015, 0.020, 0.025, and 0.030) piezoelectric ceramics were synthesized using a conventional solid-state reaction method. The effect of BiAlO3 concentration on dielectric, ferroelectric and piezoelectric properties were investigated. The ferroelectric and piezoelectric properties of BNBT ceramics are significantly influenced by the presence of BA. In the composition range studied, X-ray diffraction revealed a perovskite phase with the coexistence of rhombohedral and tetragonal phases. The temperature dependence of dielectric properties showed that the depolarization temperature (T d) shifted towards lower temperatures and that the degree of diffuseness of the phase transition around T d and T m became more obvious with increasing BiAlO3 content. The remanent polarization increased with increasing BA, and reached a maximum value of 30 μC/cm2 at x?=?0.020. As a result, at x?=?0.020, the piezoelectric constant (d 33) and the electromechanical coupling factor (k p) of the ceramics attained maximum values of 188 pC/N and 34.4 %, respectively. These results indicate that BNBT-BA ceramics is a promising candidate for lead-free piezoelectric materials.  相似文献   

17.
In order to clarify the influence of excess ions in A or B sites on perovskite (K,Na)NbO3 ceramics, various compositions of (K0.48Na0.52)Nb1+x%O3 (ABO3) ceramics where x is in the range of ±1 % were prepared by conventional solid state method and their densification, structure, dielectric and piezoelectric properties were investigated. Results showed that a small amount of excess A-site ions could compensate for the deficiency of K and Na ions in A-sites caused by volatilization resulting in good piezoelectric properties. The ceramics with x?=??0.1 exhibited optimum piezoelectric properties with d 33?=?127pC/N and k p?=?0.41. However, presence of too much alkali elements (x?<??0.5) led to deterioration of density, dielectric and piezoelectric properties, although the crystal structure was not changed. The electrical properties, on the other hand, were not sensitive to the B-site excess ions. These results are expected to be very useful for further designing of (K,Na)NbO3-based ceramics as lead-free alternatives to piezoelectric materials.  相似文献   

18.
Lead free 0.95[(K0.5Na0.5)1-x Ag x NbO3]-0.05LiSbO3 (KNAN-LS) ceramics with x?=?0.02, 0.04, 0.06 and 0.08 have been synthesized by conventional solid state reaction route (CSSR). XRD analysis confirmed the presence of a mixed structure for x?=?0.06. The orthorhombic?Ctetragonal polymorphic phase transition (PPT) temperature and the Curie temperature (Tc) decreased with the increase in Ag+ ion content in KNAN-LS ceramics. The relationship between the PPT of the ceramics and the temperature dependence of electrical properties of KNAN-LS ceramics were discussed in detail. The KNAN-LS ceramics with x?=?0.06 showed better piezoelectric and electromechanical properties (d33?=?227pC/N and kp?=?42.5?%).  相似文献   

19.
This paper describes the material preparation and characteristics of potassium sodium niobate, K x Na1? x NbO3 (KNN), with Bi3+ doping. Some physical properties including density, dielectric constant, loss tangent and ferroelectric hysteresis, were examined. The samples were characterized by using X-ray diffraction method and the grain size was measured by using SEM micrographs. Dielectric constant, loss tangent, and electromechanical coupling coefficient of samples were measured at different frequencies. The changes in physical properties are remarkable when KNN is doped with Bi3+ ions.  相似文献   

20.
Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.92(Ba0.8Sr0.2)0.08 TiO3+x mol% La2O3(x = 0, 0.1, 0.3, 0.5, 0.8) were synthesized by conventional solid state reaction. The crystal structure of all compositions is mono-perovskite ascertained by XRD. The grain size decreased and diffuse phase transition behavior was more evident with the increasing amount of La2O3. The piezoelectric constant d33 and the electromechanical coupling factor kp showed the maximum value of 165 pC/N and 0.322 at 0.3% and 0.1% La2O3 addition, respectively, and rapidly decreased when La2O3 addition over 0.5%. The loss tangent tanδ linearly increased and the mechanical quality factor Qm linearly decreased with the increasing amount of La2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号