首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以糠醛渣活性炭、酚醛树脂、羧甲基纤维素和粘土为原料,按一定比例混合均匀后,挤压成型,经过炭化活化处理后,制得蜂窝状活性炭(HAC-C)。以产品得率、平均脱硫率和累积脱硫量为评价指标,研究了蜂窝状活性炭的制备工艺条件。得出炭化温度550℃、炭化时间60min、活化温度880℃、活化时间60min、CO2流量150mL/min为最优制备条件。  相似文献   

2.
兰炭末加入黏结剂混合成型,经炭化和活化制得成型活性炭.利用TG-DTG对热解过程中成型料的炭化行为进行探讨;测试不同炭化温度的成型活性炭的收率、抗压强度和碘吸附值,采用N2吸附法和红外光谱对450℃炭化成型活性炭的孔结构及表面化学性质进行表征.结果表明,炭化温度越高,成型活性炭的收率越小,抗压强度越小,碘吸附值越大.经450℃炭化、800℃水蒸气活化60 min制得的活性炭表面具有大量的羟基、羰基和烃羟基等活性基团,比表面积为384.53 m2/g,属于中孔隙发达的活性炭.  相似文献   

3.
以重质沥青为原料,采用空气热聚合法-物理活化法协同制备重质沥青基活性炭。通过正交设计法系统研究了预氧化升温速率、恒温温度、恒温时间、活化时间、活化温度、炭化时间、炭化温度等因素对重质沥青基活性炭的影响。利用扫描电镜、碘吸附值等对活性炭的表面形态及吸附特性进行表征。结果表明,空气热聚合法-物理活化法协同制备重质沥青基活性炭的优化条件为:预氧化升温速率为2℃/min、预氧化恒温温度为300℃、预氧化恒温时间为1 h、炭化温度为500℃、炭化时间为120 min、活化温度为850℃、活化时间为90 min,该工艺条件下制备的活性炭具有较为发达的微孔结构,碘吸附值为689.33 mg/g。  相似文献   

4.
以新疆水西沟煤为原料,采用水蒸气化学活化法制备活性炭,考察了不同炭化温度、炭化时间、活化温度、活化时间下制得的活性炭对亚甲基蓝值和碘值的影响,确定了煤基活性炭制备最适宜的工艺条件(炭化温度为500℃、炭化时间为2 h、活化温度为900℃、活化时间为2 h),探讨了煤基活性炭对冶炼废水中镍离子的吸附性能。结果表明制备的煤基活性炭对冶炼废水中镍离子具有很好的吸附效果,当p H为8、活性炭投加量为7 g/L、温度为50℃、吸附时间为30 min时,废水中镍离子的去除率可达到94.7%。  相似文献   

5.
正交实验法在高硫容成型活性焦制备中的应用   总被引:2,自引:2,他引:0  
用正交实验法制备了成型活性焦 ,并对各种因素进行了方差分析和效应考察 ,得到了用高挥发分彬县煤制备高硫容成型活性焦的工艺条件 :炭化温度 40 0℃ ,炭化时间 2 0 min,活化温度 95 0℃ ,活化时间 60 min,影响程度为 :活化时间 >活化温度 >炭化温度 >炭化时间 ,并从机理上给以一定的解释  相似文献   

6.
以改质煤沥青为原料,采用KOH活化法制备活性炭。探讨了碱炭比、炭化时间、活化温度、活化时间等对活性炭吸附性能的影响。结果表明,制备改质煤沥青基活性炭的最佳条件为:碱炭比为4,炭化时间为45 min,活化温度840℃,活化时间140 min,在此条件下,制得改质煤沥青基活性炭的碘吸附值为1 152.8 mg/g。  相似文献   

7.
桑枝基活性炭的制备及其对多环芳烃菲的吸附   总被引:1,自引:0,他引:1  
王姗  巴淑萍  刘强  唐玉斌 《净水技术》2013,(6):64-68,78
以废弃桑枝为原料,以磷酸氢二铵为活化剂制备活性炭,考察了浸渍比、炭化温度、炭化时间、活化温度和活化时间对活性炭的亚甲基蓝吸附值的影响,确定了制备桑枝基活性炭的最佳工艺条件。研究了桑枝基活性炭对水中多环芳烃菲的吸附性能。结果表明制备活性炭的最佳工艺条件:浸渍比为2:1、炭化温度为400℃、炭化时间为90min、活化温度为800℃、活化时间为120min。制备的活性炭对多环芳烃菲具有较好的吸附效果,初始浓度为1000μg/L的菲在桑枝活性炭上吸附去除率可达71.7%,吸附平衡时间为240min。Freundlich吸附模型可较好地模拟菲在桑枝基活性炭上的吸附等温线。菲的吸附以物理吸附为主,吸附较易进行。  相似文献   

8.
传统煤焦油基制备柱状活性炭粘结剂存在成本高、污染严重、质量不稳定等诸多问题,文章将煤沥青和膨化淀粉复配为新型粘结剂,以无烟煤为原料制备柱状活性炭。采取正交试验设计实验方案,研究活化温度、炭化温度、活化时间、炭化时间与水蒸气通量对柱状活性炭强度、碘吸附值、亚甲基蓝吸附值以及收率的影响,并利用热重分析仪考察了粘结剂的热性能。结果表明:制备柱状活性炭的最佳工艺参数为:活化温度850℃,炭化温度600℃,活化时间300 min,炭化时间60 min,水蒸气通量0.2 mL/min,其碘吸附值达到1241.1 mg/g,亚甲基蓝吸附值高达159.5 mg/g,强度为75.2%,收率38.9%,说明新型粘结剂可制备出符合要求的净化用柱状活性炭。  相似文献   

9.
以武钢焦化公司焦油渣为原料,KOH为活化剂,采用正交实验研究了活化温度、活化时间、碱炭比(氢氧化钾与焦化除尘灰的质量比)和炭化温度对所制活性炭吸附性能的影响,得出制备焦油渣基活性炭影响因素主次顺序为活化温度、活化时间、碱炭比、炭化温度,最佳活化条件为活化温度为800℃,活化时间为100min,碱炭比为4:1,炭化温度为400℃。在此条件下制备活性炭的碘吸附值为1300.765mg/g。  相似文献   

10.
正交实验用于煤沥青基活性炭的工艺优化   总被引:2,自引:0,他引:2  
介绍了正交实验法用于煤沥青基活性炭的研制,在固定碱炭比的条件下,分析了炭化温度(A)、炭化时间(B)、活化温度(C)及活化时间(D)四因素对活性炭比表面积的影响。通过直观分析和方差分析可知,四因素中对BET比表面积影响次序为:B>D>A>C,从而找出制备煤沥青基活性炭的最优工艺条件A3B1C1D2,并且在炭化温度为450℃、炭化时间为30min、活化温度为800℃和活化时间为100min的条件下制备出比表面积为1846m2/g的活性炭。  相似文献   

11.
活性炭纤维是以高聚物为原料,经高温炭化和活化而制成的一种纤维状高效吸附分离材料.利用废旧有机丝为原料,探索在不同工艺条件下制取活性炭纤维的可行性.经扫描电镜、X射线衍射、红外分光光度计及亚甲基蓝吸附实验分析得出优化的工艺条件为:炭化温度,650℃;用CO2活化,活化温度为950℃,活化时间为60min,制得吸附性能优良的活性炭纤维.  相似文献   

12.
以熔融纺丝制备的Kraft硬木木质素纤维(HKL)为原料,经炭化得到木质素基炭纤维(HKL-CF),再采用水蒸气活化法制备了活性炭纤维(HKL-ACF),通过红外光谱仪和扫描电镜研究了水蒸气活化对活性炭纤维化学结构和表面形貌的影响,采用全自动物理吸附仪、X射线衍射仪和拉曼光谱仪等研究了活化时间、活化温度和活化水蒸气流量对所制备活性炭纤维的比表面积、孔结构和微晶结构的影响规律。研究表明,水蒸气活化处理提高了活性炭纤维中的C—O和C=C结构含量;随着活化时间的延长,活性炭纤维的比表面积增大,且随活化温度和水蒸气流量的提高呈现出先增大后减小的趋势;晶粒尺寸随着活化时间和温度的提高,逐渐变小,纤维表面的石墨化程度随活化时间的增加,逐渐变大;活化温度800 ℃,活化时间4 h,水蒸气流量1 mL/min下制备的活性炭纤维的BET比表面积最高可达2 081.34 m2/g,总孔容最大为1.60 cm3/g。  相似文献   

13.
探讨了以花生壳为原料制备活性炭的工艺条件。通过单因素实验,分别比较不同活化剂、活化温度和活化时间对以花生壳为原料生产的活性炭碘吸附值和得率的影响。采用不同的活化剂时,用ZnCl2溶液作活化剂的活性炭得率较高,达48%;用ZnCl2溶液作活化剂,活化时间为1~5 h,活性炭得率为37%~51%,碘吸附值为244~371 mg.g-1,活化温度为350~750℃时,活性炭得率为8%~60%,碘吸附值为267~362 mg.g-1。花生壳与ZnCl2溶液质量比为1:3.5,ZnCl2质量浓度为15%,在450~550℃下连续炭活化3~4 h,为本实验室条件下以花生壳为原料制取活性炭的适宜工艺条件。  相似文献   

14.
聚丙烯腈(PAN)中空纤维在空气中250℃预氧化2 h后,在氮气气氛中炭化,得到PAN基中空炭纤维(PAN-CHF),再在二氧化碳气氛中活化,得到PAN基活性中空炭纤维(PAN-ACHF)。考察了炭化温度和炭化时间对PAN-CHF的收缩率、PAN-ACHF的收缩率、活化收率、比表面积和吸附性能的影响。结果表明:炭化温度为1 000℃时,PAN-CHF和PAN-ACHF的收缩率相同;炭化温度为900℃时,PAN-ACHF的比表面积最大,吸附性能最好,炭化时间对PAN-CHF和PAN-ACHF的收缩率影响不大,但活化收率随炭化时间延长呈上升趋势,比表面积先增后降,炭化时间为60 min时达到最大,其吸附量最大。  相似文献   

15.
利用废弃的山楂核为原料生产木质颗粒活性炭,并对活性炭生产过程中炭化、活化及精制步骤的工艺条件进行了优化。实验结果表明在炭化过程中,采用2 h内缓慢升温至300 ℃,并维持1 h,而后在3 h内升温至600 ℃的炭化方式有利于保证炭化料的得率和强度;活化温度900~950 ℃,活化时间6 h为宜;精制过程中盐酸用量是炭质量的10%为宜。在优化条件下经过炭化和活化制成的活性炭碘值可达1 100 mg/g,亚甲基蓝吸附值可达180 mg/g,强度可达94%,能够满足一般用户的需求。产品通过酸洗和漂洗之后可使铁盐的含量由0.25%降至0.02%,灰分由6%降至2%。  相似文献   

16.
吸附法回收油气的研究   总被引:1,自引:0,他引:1  
分别以活性炭和活性炭纤维为吸附剂吸附回收油气,比较了两者油气吸附性能的差异,研究结果表明:在相同的吸附条件下,活性炭纤维对油气的穿透吸附量为114.0mg/g,明显大于活性炭对油气的穿透吸附量(71.8 mg/g),而且活性炭纤维床层的最高温升仅为4.7℃,低于活性炭床层温升(12.0℃);活性炭纤维对油气的吸附速率快、穿透时间短,但是能处理的油气的浓度小;活性炭重复利用18次后失活,活性炭纤维利用20次后失活.  相似文献   

17.
In this study,waste tire was used as raw material for the production of activated carbons through pyrolysis.Tire char was first produced by carbonization at 550℃ under nitrogen.A two factorial design was used to optimize the production of activated carbon from tire char.The effects of several factors controlling the activation process,such as temperature(850-950 ℃),time(2-6 h) and percentage of carbon dioxide(70%-100%) were investigated.The production was described mathematically as a function of these three factors.First order modeling equations were developed for surface area,yield and mesopore volume.It was concluded that the yield,BET surface area and mesopore volume of activated carbon were most sensitive to activation temperature and time while percentage of carbon dioxide in the activation gas was a less significant factor.  相似文献   

18.
以木质活性碳纤维(ACHF)为载体,通过浸渍草酸铌以及改变煅烧温度,制备出不同煅烧温度(400、600和800℃)下的氧化钯/木质活性碳纤维(Nb2O5/ACHF).采用扫描电镜(SEM)、X射线衍射(XRD)、X光电子能谱(XPS)和全自动比表面积与孔径分析(BET)仪对制备的氧化铌/木质活性碳纤维结构、表面孔径等进...  相似文献   

19.
用六水氯化镁制备高纯镁砂工艺   总被引:2,自引:0,他引:2  
研究了以MgCl2?6H2O为镁源,Na2CO3为沉淀剂,在反应温度为35 ℃的条件下,通过恒流进料,制备出高纯镁砂的前体。由XRD表征结果可知:前体的主要成分为二水合碳酸镁(MgCO3?2H2O)。在800 ℃温度下,将前体煅烧2 h,得到高纯度、粒径分布均匀的活性MgO颗粒。后续高温真空烧结致密化的过程中,与果壳、焦油活性炭相比,当椰壳活性炭作为第二相添加剂时,高纯镁砂的气孔率降低和体积密度提高效果最为明显。对比可知,椰壳活性炭的添加量为0.03%~0.05%时效果最优,经1600 ℃真空烧结5 h得到烧结镁砂的体积密度高于3.4 g/cm3,纯度高于98.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号