共查询到18条相似文献,搜索用时 78 毫秒
1.
针对图像配准中特征点匹配方法存在实时性不高和精度低的问题,提出了一种基于K means聚类和RANSAC的图像配准算法。该算法根据匹配点对距离和方向特征的视差约束条件,首先利用K means聚类对匹配点对进行预处理,剔除大部分错误匹配点,然后利用RANSAC进行二次优化,实现了图像的快速和精确配准。实验结果表明,该算法不仅提高了图像配准的精确度,而且提高了图像配准的速度。 相似文献
2.
模板匹配算法应用广泛,但不能判断配准结果是否正确,也无法比较不同像对配准结果的准确程度。提出无变形、无旋转情况下分块-空间聚类的图像配准算法,将基准图分块在参考图上配准从而获得基准图的多个配准位置,并对这些位置进行空间聚类从而计算基准图的最后配准位置,并评估配准质量。试验表明该算法配准准确度高,能够正确评估配准质量并比较不同像对配准结果的准确程度。 相似文献
3.
基于形态学聚类算法图像配准仿真研究 总被引:1,自引:0,他引:1
研究图像配准精确度问题。由于两张图片几何关系及量度均有不同,要达到配准效果应有空间一致性。传统的聚类图像配准算法进行图像配准时,配准精度较低,算法复杂度高等不足。为了有效提高图像配准的精确度,提出了一种改进的数学形态学和聚类算法相结合的图像配准方法。算法首先改进的基于空间模式均值聚类对图像进行区域分块,并对分块的位置进行空间聚类,并准确计算出基准图像的最后的配准位置,并采用数学形态学方法对配准后的图像进行边缘处理,最后评估配准图像的质量。仿真结果表明,提出的改进的算法有效的提高了配准精确度,是一种可行性有效的图像配准算法,为图像配准提供了依据。 相似文献
4.
《软件》2018,(1):75-82
ICP算法广泛应用于医学图像配准,但存在浮动点集初始平移矩阵和旋转矩阵对ICP的影响较大,图像配准容易造成目标函数陷入局部最优值且计算量大等问题。论文提出了基于改进K-Means聚类医学图像配准算法,该方法通过计算出参考图像和浮动图像的质心,获得配准平移初始值;对医学图像坐标进行中心化处理,通过改进的K-Means聚类方法把图像坐标聚成2类;把这2个聚类中心拟合成一条直线,求得该条直线的斜率,进而求得相关倾斜角,获得配准旋转初始值;使用BSGO自动选择特征点,得到参考点集和浮动点集。通过实验得出该算法既可用于单模态图像配准,也可用于多模态图像配准;具有运算量少、图像配准速度较快、计算比较简单、精确度较高等特点,并且解决了图像配准容易陷入局部最优的问题。 相似文献
5.
ICP和互信息广泛应用于医学图像配准,但存在以下问题:其计算量非常大,耗时长;受初始旋转和平移参数影响较大,图像配准容易造成目标函数陷入局部最优值。该方法通过计算参考图像和浮动图像的质心,获得配准平移初始值;对医学图像坐标进行中心化处理,通过改进的FCM聚类方法把图像坐标聚成2类;把这2个聚类中心拟合成一条直线,可以算出该直线的斜率,得出其倾斜角,从而获得配准旋转初始值。实验结果表明,该方法既可用于单模态图像配准,也可以用于多模态配准。还具有运算量少、图像配准速度较快、计算比较简单、精确度较高等特点,并且解决了图像配准容易陷入局部最优的问题。 相似文献
6.
提出了一种新的基于条件数的图像配准算法。该方法在Harris算法提取角点的基础上,采用条件数定量地分析了噪声对确定图像间变换关系的影响程度,通过阈值设定筛选出具有良好稳定性的角点,克服了Harris角点检测可能存在的角点位置偏移和易受噪而提取出伪角点等问题。最后选择了Random Sample Consensus(RANSAC)匹配准则来确定匹配点对。经过实验证明了该配准算法具有精确性、抗噪性和鲁棒性。 相似文献
7.
8.
针对无人机遥感图像畸变较大,而传统快速鲁棒(Speeded-Up Robust Features,SURF)算法不能提供足量兴趣点的问题,提出了一种基于Harris角点和SURF算法的无人机遥感图像配准方法。首先构建多尺度空间,并在多尺度空间下检测Harris角点作为兴趣点;然后计算各兴趣点的64维SURF描述子;最后运用K-d树匹配搜索策略得到两幅图像的匹配点对。将该方法与传统SURF配准方法进行实验对比,实验表明改进算法在保证实时性的情况下可以获得更多的匹配点对,并具有更高的配准精度。 相似文献
9.
10.
11.
视频图像配准是运动视频处理中的一项关键技术。提出了一种新的基于3参数模型的配准算法,该算法利用多尺度的角点检测方法从相邻两帧中抽取特征点,选用Hausdorff距离对特征点集进行匹配,计算3参数模型参数,从而实现图像配准。与传统的6参数仿射模型相比,模型参数的降低并没有显著降低配准效果,同时由于参数搜索空间的减少,该方法用更快的速度得到较准确的结果。 相似文献
12.
基于Harris角点量与相位相关的亚像素级图像配准方法* 总被引:1,自引:0,他引:1
相位相关法是一种常用的图像配准方法,而直接基于傅里叶变换的快速图像配准方法(FDFA)使之具有亚像素级的配准精度,它需要根据图像内容细心选择参与相位拟合的频率分量,并在图像上施加窗口以抑制频域的图像边界效应,从而提高其偏移量估计精度。从边界效应抑制的角度出发,利用Harris角点量代替原始图像进行相位相关计算,与传统的对原始图像加窗的方法不同,该方法既抑制了边界效应,又避免引入截断误差,同时只用对其第一项频率分量进行拟合,而不需要进行频率项的选择,使相位拟合过程更简单。提取图像的Harris角点并选择其中 相似文献
13.
在指纹预处理过程中,Gabor滤波器对于图像的平滑和分割具有十分显著的效果。但是Gabor滤波器对纹线方向和频率十分敏感,通过处理灰度图像得到的二值图像存在着严重的特征点丢失和变化问题。采用相位差分二值化方法,使二值化过程不依赖Gabor滤波。提出了在二值图像上利用Gabor滤波器增强的方法,保留了Gabor滤波器连接纹线断线和滤除图像中噪声的优点,避免了Gabor滤波器对频率的敏感性问题,有效地提高了指纹特征的保持度。 相似文献
14.
中药贴剂外观是中药贴剂质量的重要指标。把基于特征与基于区域的图像配准算法结合运用,进行中药贴剂图像配准。该方法将贴剂图样进行Harris角点检测,通过标准Fourier-Mellin匹配方法进行校验,重采样的图像融合,实现对检测过程中采集到的中药贴剂图像进行无缝拼接,应用于中药贴剂上方图像检测仪。实验用不同大小、不同形状的褶皱对中药贴剂外观表面进行标记,以便检测该算法配准精度。结果表明,该算法应用合理,能够保证中药图像配准的高精度要求。 相似文献
15.
角点含有丰富的图像结构信息,在图像配准中是广泛应用的图像特征。Harris算法是经典的角点提取算法,Harris角点对图像旋转具有不变性,但对尺度变化敏感,在有尺度变化的图像配准中,应用受限。仿照SIFT特征点提取过程,提出了一种多尺度角点提取方法,提取的多尺度角点对图像旋转和尺度变化有很好的适用性。并用SIFT描述子描述,用光学及SAR图像进行了配准实验。结果表明,与SIFT、Harris算法相比,本文方法在保证配准精度的基础上,配准时间减少40%以上,特征点在配准过程中的利用率提高一倍多。 相似文献
16.
使用Gabor滤波器组进行布匹在线疵点检测与疵点图像分割。通过定义一个分辨力函数和一些合成的疵点图像,对已有的Gabor滤波器组的参数选择方式做出评价,提出了在实时应用场合有效地确定Gabor滤波器组参数的方法。分析指出:Gabor滤波器的实部输出是主要因素;滤波器的方位角仅选取疵点出现得最多的水平和垂直方向,而径向中心频率的选取依赖于纹理本身的固有频率;滤波器的长度也应与纹理的固有周期一致。尽管Gabor滤波器的个数减少到4个以满足实时性要求,但结果表明,滤波器组仍能很好地检测和分割出大多数疵点。 相似文献
17.
在医学图像处理过程中,针对一般方法提取颅脑图像边缘不是很清晰的情况,提出了一种基于短时傅立叶变换的新的Gabor滤波方法。该方法通过选取一组能够覆盖整个频域的滤波器,分别提取图像的局部边缘信息,然后按照一定的规则将提取出局部信息的多幅图像整合成一幅图像。普通Gabor滤波计算量较大,耗时较长,而该文所述方法能显著地减少运算量。并且相对于其他几种滤波方法也表现出定位准确,检测效果明显,以及鲁棒性较好的特点。 相似文献
18.
研究基于点特征的图像配准方法。首先利用canny算子提取图像的边缘,然后用MIC角点检测算子提取边缘中的角点,对提取出的角点进行配对后,利用仿射变换实现图像的配准。最后以脑图像配准验证了算法的有效性。 相似文献