首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
《节能》2021,40(7):24-28
采用焓-多孔介质法,分别对内嵌针状翅片以及填充多孔泡沫金属的相变热沉装置内相变材料的熔化过程进行三维数值模拟,分析不同加热热流、翅片数量、间距、高度对蓄热过程的影响,对比内嵌翅片和填充多孔泡沫金属的热沉装置的蓄热能力。结果表明,随着热流密度的增加,蓄热速率明显加快,蓄热时间缩短。随着翅片数量的增多,相变材料的导热能力得到明显改善。翅片排布过于稀疏或紧密,导热能力的强化效果都不如均匀排布时明显。随着翅片高度的增加,相变材料的导热能力有明显的提升。通过比较发现,多孔泡沫金属对蓄热速率的强化效果比针状翅片更加明显。  相似文献   

2.
针对芯片功耗与集成度提高而导致的局部热点问题,设计了一种用于芯片散热的复合热沉环路热管系统。建立了环路热管蒸发段模型,通过数值模拟的方法,证明了复合热沉环路热管系统能够降低热点温度,提高散热表面的温度均匀程度,且散热效果与热点的分布位置有关。当热点的热流密度为160W/cm2,热沉横向、纵向导热率分别为1500W/(m?K)、24W/(m?K)时,热点温度为88.88°C,相比于无热沉时降低了5.96°C。研究了不同热沉导热率下的热沉厚度对热点温度的影响,结果表明:若导热率各项同性,热点温度随热沉厚度的增加而降低,之后趋向不变;若为各项异性,存在最优的热沉厚度,使热点温度最低。  相似文献   

3.
《节能》2015,(9)
建立导热基座上的三维圆柱体热源散热模型,分别以最高温度和最大温差为指标,研究层流流动条件下热源半径、强度和位置以及热源和基座的导热系数对圆柱体热源构形优化的影响。研究结果表明:当给定热源强度和热导率时,存在一个临界半径使得热源最高温度取最大值;存在一个最佳半径使得热源的最大温差取最小值。热源最大温差和热源最高温度不但不能同时达到最佳,而且此高彼低。热源最高温度和温度均匀性则分别是在流体入口处和出口处达到最佳。在实际热设计中,应尽量避开临界半径以防止热点烧损,同时应注意考虑热源半径大小和热源位置的最佳折中。当给定热源半径和位置时,提高热源的导热系数,可以减小热源的最高温度,且减小其最大温差;提高基座的导热系数,可以减小热源的最高温度,但其最大温差增大。在实际热设计中,应尽可能提高热源的导热系数,对基座导热系数则应折中取值。文中所得结果可为电子元器件热设计提供理论支撑。  相似文献   

4.
多孔介质燃烧室的传热性能主要取决于多孔介质材料的热物性,本文在气固两相局部非热平衡假设基础上,建立往复式流动下多孔介质超绝热燃烧的二维数学模型,研究了多孔介质的比热、导热系数、衰减系数和体积换热系数等对温度分布和燃烧速率的影响,以期为多孔介质选材和往复流动下多孔介质超绝热燃烧器的优化设计提供理论依据。  相似文献   

5.
竖直U型埋管地热换热器热短路现象的影响参数分析   总被引:6,自引:0,他引:6  
沈国民  张虹 《太阳能学报》2007,28(6):604-607
通过引入换热器出口最高流体温度的概念,对地源热泵竖直U型埋管地热换热器的热短路现象进行了量化,基于竖直U型埋管周围的瞬时有限元模型,对影响热短路现象的主要参数(支管间距和回填料导热系数)进行了模拟分析,得出了量化结果。结果表明,增大支管间距可降低换热器出口最高流体温度,减小由热短路现象引起的热损失;回填料的导热系数对热短路现象的影响较大,当回填料导热系数小于周围土壤的导热系数时,增大回填料导热系数对减小热短路损失有较大作用,而当回填料导热系数大于土壤导热系数时则作用不大,推荐使用导热系数与周围土壤导热系数接近的回填材料。  相似文献   

6.
利用计算流体力学(CFD)对顺序排列多孔介质小球的三维填充床进行数值模拟。研究填充床内位置及空气流速变化对温度分布、努塞尔数影响,并对多孔介质小球的热回流特性进行分析,揭示填充床内传热机理。结果表明:相比于气-固两相交替存在处,与小球相切处的热的非平衡性更强。最高温度上游的换热强度与下游相比更强烈;当流速增加时,上游的对流换热作用增强,下游变化不大。在热回流过程中,在入口区域对流换热占主导地位,导热和辐射换热作用较弱;在主流场区域,导热占主导地位,其次是辐射换热,对流换热作用最弱。  相似文献   

7.
本文通过建立微型燃气轮机CW(Cross Wavy)原表面回热器热-结构耦合有限元分析模型,对其在设计工况下运行后的应力进行了有限元分析,验证了回热器所选材料的可靠性,并分析了压比和燃气入口温度对回热器的应力影响。分析结果表明:不考虑热应力,只计及压力时,回热器燃气出口侧最大应力和应变高于燃气进口侧最大应力和应变;与之相反,计及热应力时,在压力和温度耦合作用下,回热器燃气进口侧最大应力和应变高于燃气出口侧最大应力和应变;无论是计及热应力还是不考虑热应力,空气通道的波谷处应力最大,并且应力沿波谷处左右对称分布,计及热应力后,其最大应力增长较大,对应各处增幅最高达到34.1%;回热器空气通道向燃气通道侧变形,空气通道变大,燃气通道减小;随着空气侧和燃气侧压比的增加,回热器通道的最大应力也随之增加,当压比增加到8.4时,已达到换热片材料的强度极限;当燃气与空气出口温度不变、回热度减小时,随着燃气入口温度增加,最大应力随之增加,燃气入口温度每增加50 K,回热器最大应力增加约2.3 MPa。研究结果为回热器的设计提供了一定的参考依据。  相似文献   

8.
应用一维数值模拟方法,研究了多孔介质引起的热回流效应、多孔介质的导热系数、系统的热损失、混合气当量比对燃烧波波速和反应区最高温度的影响.分别将燃烧区简化为无限薄和极其狭窄的区域,从理论上得到了低速过滤燃烧波波速和反应区的最高温度两个关系式,构成了两者的封闭解.利用数值模拟和理论分析求得的燃烧波波速和反应区的最高燃烧温度,取得了与实验结果相同的趋势.  相似文献   

9.
新型多孔铜微通道散热技术采用多孔铜微通道结构,增加热沉与冷却工质的接触面积,提高热沉的散热性能。利用单室金属-气体共晶定向凝固工艺,通过控制冷却速度、过热度、气压等工艺参数,从而制备优质的多孔铜材料。根据多孔铜微通道热沉散热原理,搭建散热性能测试平台,研究冷却工质流量、多孔铜材料的孔径和孔隙率、入口截面斜率角对多孔铜微通道热沉散热性能的影响规律。结果表明:增加冷却工质流量有利于提高多孔铜微通道热沉的散热性能;在恒定体积流量下,减小孔径有利于提高多孔铜微通道热沉的散热性能;当多孔铜孔隙率为30.8%时,多孔铜微通道热沉散热性能最佳;入口截面斜率角对多孔铜微通道热沉散热性能的影响较小。  相似文献   

10.
利用激光导热仪和差式扫描量热仪(DSC)对温州电厂煤渣样品的比定压热容和导热系数进行测试,研究煤渣的蓄热和导热性能,及煤渣中添加铁粉和水泥对样品热性能的影响。实验结果显示:煤渣、铁粉质量比为6∶4时,相较于纯煤渣,比定压热容由1. 13 kJ/(kg·K)增加到50. 91 kJ/(kg·K),导热系数由0. 18 W/(m·K)增加到10. 78 W/(m·K)。当煤渣铁粉样品中水泥的添加量为0. 03 g时,比定压热容为49. 89 kJ/(kg·K),导热系数为8. 18 W/(m·K)。研究结果表明:煤渣中添加铁粉大幅度增加了煤渣的蓄热和导热性能,而水泥的加入在一定程度上降低了煤渣铁粉样品的导热性能,从而提高了煤渣作为太阳能光热发电蓄热材料的可能性。本实验可为蓄热材料的选择及性能改进提供参考。  相似文献   

11.
The present study addresses a novel cooling scheme for the high-power solid-state laser slab. The scheme cools the laser slab by forced convection in a narrow channel through a heat sink. Numerical simulations were conducted to investigate the thermal effects of a Nd:YAG laser slab for heat sinks of different materials, including the undoped YAG, sapphire, and diamond. The results show that the convective heat transfer coefficient is non-uniform along the fluid flow direction due to the thermal entrance effect, causing a non-uniform temperature distribution in the slab. The heat sink lying between the coolant fluid and the pumped surface of the slab works to alleviate this non-uniformity and consequently improve the thermal stress distribution and reduce the maximum thermal stress of the slab. The diamond heat sink was found to be effective in reducing both the highest temperature and the maximum thermal stress; the sapphire heat sink was able to reduce the maximum thermal stress but not as effective in reducing the highest temperature; and the undoped YAG heat sink reduced the maximum thermal stress but tended to increase the highest temperature. Therefore, cooling with the diamond heat sink is most effective, and that with the sapphire heat sink follows; cooling with the undoped YAG heat sink may not apply if the highest temperature is a concern.  相似文献   

12.
Numerical analysis is performed to examine the heat transfer characteristics of a double-layered microchannel heat sink. The three-dimensional governing equations are solved by the finite volume method. The effects of substrate materials, coolants, and geometric parameters such as channel number, channel width ratio, channel aspect ratio, substrate thickness, and pumping power on the temperature distribution, pressure drop, and thermal resistance are discussed. Predictions show that the heat transfer performance of the heat sink is improved for a system with substrate materials having a higher thermal conductivity ratio. A coolant with high thermal conductivity and low dynamic viscosity also enhances the heat transfer performance. The pressure drop decreases with the channel aspect ratio and channel width ratio. Further, the thermal resistance of the microchannel heat sink can be minimized by optimizing the geometric parameters. Finally, the results show that for the same geometric dimensions, the thermal performance of the double-layered microchannel heat sink is better than that of the single-layered one, by an average of 6.3%.  相似文献   

13.
A stress-field in an annular fin of temperature-dependent conductivity under a periodic heat transfer boundary condition is analyzed by the Adomian's decomposition method. The distribution of the transient thermal stress is obtained by direct integration of the temperature distribution. The heat transfer process is governed by the parameters of the convectional fin parameter N, the thermal conductivity parameter k , the frequency parameter B, and the amplitude parameter s. For k < 0 , the mean temperature is decreased, which in turn increases the thermal stress and enhances the oscillation of the timewise thermal stresses. The opposite effect occurs for k > 0 . The maximum radial stress appears at R = 1.3 , and the maximum tangential stress occurs at the inner base of the fins. Detailed results showing the effects of various parameters on temperature and thermal stresses are presented and discussed.  相似文献   

14.
The present study uses a heat sink plate to conduct natural convection in order to examine different areas of the heat sink and the effects of mounting different quantities of LEDs on the same surface on the thermal mechanism performance. Based on the experimental results, when a heat sink plate is arranged vertically, the channel flow between the fins is parallel to gravity. The LED substrate plate temperature is different from that at the end of the fin, and rises with the increase of total power. The thermal resistance rises slowly and then declines with the increase of LED electric power. As for temperature change of the LED substrate and at the end of the fin, when the temperature difference is increased, it also increases the natural convection thrust. For thermal resistance, the environmental thermal resistance at the bottom of the heat sink plate is lower than at the middle and top sections. These LED power emissions will be changed synchronously. Regarding the LED quantity control, the rate of increase is the highest for the heat sink plate with 30 pcs LED, and the temperature is very high for the heat sink plate with 45 and 60 pcs LEDs when the power approaches 1 W. Moreover, the rising rate is the lowest for the heat sink plate with 60 pcs LEDs. Depending on the brightness requirement, the illuminant is provided by 60 pcs LEDs to obtain a lower temperature so that the system can reduce the thermal protective design. Evidence shows that a high conductivity heat pipe embedded in the channel can provide a more uniform temperature distribution. The present study provides a further understanding on the influence of different illuminant densities on the heat sink structure and the temperature difference in an LED heat transfer device, in order to provide a reference for heat sink design of a backlight module and LED illuminant module evaluation. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20321  相似文献   

15.
The combined effects of conjugation and magnetic field on the heat transfer enhancement in a laminar liquid metal flow past a thermally conducting and sinusoidally oscillating infinite flat plate are investigated. The wall materials used are compatible with the liquid metals and are assumed to be of finite thickness. Analytical solutions are obtained for the velocity and the temperature distributions. The combined effects of thermal conductivity, the thickness of the plate, and the transverse magnetic field on the net heat flux transported are analyzed in detail and it is found that such effects are same as those on the transverse temperature gradient at any frequency. Due to oscillation, the heat flux is enhanced by O(103). The optimum value of wall thickness and the corresponding boundary layer thickness for which the maximum heat flux is obtained are reported. The heat flux transported can be increased by choosing a wall of low thermal conductivity. A maximum increase of 52.03% in heat flux can be achieved by optimizing the wall thickness. These information may be useful while designing magnetohydrodynamic liquid metal heat transfer systems. All the results obtained are in good agreement with the results reported earlier.  相似文献   

16.
Since vapor chambers exhibit excellent thermal performance, they are suited to use as bases of heat sinks. This work experimentally studies the thermal performance of plate-fin vapor chamber heat sinks using infrared thermography. The effects of the width, height and number of fins and of the Reynolds number on the thermal performance are considered. Experimental data are compared with corresponding data for conventional aluminum heat sinks. The results show that generated heat is transferred more uniformly to the base plate by a vapor chamber heat sink than by a similar aluminum heat sink. Therefore, the maximum temperature is effectively reduced. The overall thermal resistance of the vapor chamber heat sink declines as the Reynolds number increases, but the strength of the effect falls. The effect of the fin dimensions on the thermal performance is stronger at a lower Reynolds number. At a low Reynolds number, a suitable number of fins must be chosen to ensure favorable thermal performance of the vapor chamber heat sink. However, at a high Reynolds number, the thermal performance improves as the fin number increases.  相似文献   

17.
A numerical study has been carried out to optimize the thermal performance of a pin-fin heat sink. A pin-fin heat sink, which is placed horizontally in a channel, is modeled as a hydraulically and thermally anisotropic porous medium. A uniform heat flux is prescribed at the bottom of the heat sink. Cool air is supplied from the top opening of the channel and exhausts to the channel outlet. Comprehensive numerical solutions are derived from the governing Navier-Stokes and energy equations using the Brinkman-Forchheimer extended Darcy model and the local thermal nonequilibrium (LTNE) porous model for the region occupied by the heat sink. Results from this study indicate that the anisotropy in permeability and solid-phase effective thermal conductivity changes substantially with the variation of porosity. Optimum porosity for maximum heat dissipation depends on the pin-fin thickness, the pin-fin height, and the Reynolds number. A correlation for predicting the optimum porosity for a pin-fin heat sink is proposed. Generally, in the case of thin pin-fins the heat sink should be designed to have a high porosity, while in the case of thick pin-fins the heat sink should be designed to have a relatively low porosity.  相似文献   

18.
In this article, we study the thermal performance of phase-change material (PCM)-based heat sinks under cyclic heat load and subjected to melt convection. Plate fin type heat sinks made of aluminum and filled with PCM are considered in this study. The heat sink is heated from the bottom. For a prescribed value of heat flux, design of such a heat sink can be optimized with respect to its geometry, with the objective of minimizing the temperature rise during heating and ensuring complete solidification of PCM at the end of the cooling period for a given cycle. For given length and base plate thickness of a heat sink, a genetic algorithm (GA)-based optimization is carried out with respect to geometrical variables such as fin thickness, fin height, and the number of fins. The thermal performance of the heat sink for a given set of parameters is evaluated using an enthalpy-based heat transfer model, which provides the necessary data for the optimization algorithm. The effect of melt convection is studied by taking two cases, one without melt convection (conduction regime) and the other with convection. The results show that melt convection alters the results of geometrical optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号