首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
《Ceramics International》2023,49(8):12285-12292
In order to reduce the joining temperature of SiC ceramics by glass-ceramic joining, some oxides were usually introduced into to Y2O3–Al2O3 for reducing the eutectic temperature. However, the joints might have poor high-temperature resistance due to the low melting point of the joining layer. In the present work, based on novel SiO2-based liquid phase extrusion strategy, joining of SiC ceramics with Y2O3–Al2O3 interlayer was carried out by using Y2O3–Al2O3–SiO2 as the filler through spark plasma sintering (SPS). The SiO2-free interlayer of Y2O3–Al2O3 was used for comparison. It was found that SiC joints using Y2O3–Al2O3 could be only joined at a high temperature of 1800 °C, and the thickness of the interlayer was about 20 μm. The shear strength of the joint obtained at 1800 °C was 89.62 ± 4.67 MPa and the failure located in the SiC matrix. By contrast, reliable joining of SiC ceramics could be finished at as low as 1550 °C by extrusion of SiO2-containing liquid phase when using Y2O3–Al2O3–SiO2 as the interlayer, alongside the interlayer thickness of only several microns. The joint strengths after joining at 1550 °C was 84.90 ± 3.48 MPa and the failure located in matrix position. The joining mechanism was discussed by combining the detailed microstructure analysis and phase diagram.  相似文献   

2.
Silicon nitride ceramics were sintered using Y2O3–Al2O3 or E2O3–Al2O3 (E2O3 denotes a mixed oxide of Y2O3 and rare-earth oxides) as sintering additives. The intergranular phases formed after sintering was investigated using high-resolution X-ray diffraction (HRXRD). The use of synchrotron radiation enabled high angular resolution and a high signal to background ratio. Besides the appearance of β-Si3N4 phase the intergranular phases Y3Al5O12 (YAG) and Y2SiO5 were identified in both samples. The refinement of the structural parameters by the Rietveld method indicated similar crystalline structure of β-Si3N4 for both systems used as sintering additive. On the other hand, the intergranular phases Y3Al5O12 and Y2SiO5 shown a decrease of the lattice parameters, when E2O3 was used as additive, indicating the formation of solid solutions of E3Al5O12 and E2SiO5, respectively.  相似文献   

3.
In this paper, silicon carbide ceramics were prepared by aqueous gelcasting and pressureless sintering using Al2O3 and Y2O3 as the sintering additives. In order to develop well dispersed SiC slurries in the presence of sintering additives, the Al2O3 and Y2O3 powder was treated in the citric acid solution in advance. Zeta potential measurement showed that the isoelectric point (IEP) of Al2O3 and Y2O3 powder moved toward low pH region after treatment. Rheological measurement confirmed that the addition of as-treated powder showed very limited influence on the slurry properties as compared to that of untreated powder. SiC slurries with solid content of 54 vol% and enough fluidity can be developed. After gelcasting and pressureless sintering, SiC ceramics with nearly full density, fine grained and homogeneous microstructure can be obtained. Results showed that the surface treatment of Al2O3 and Y2O3 with citric acid is effective for the gelcasting process of SiC.  相似文献   

4.
Fully dense SiC bulks with Al2O3 and Al2O3 + Y2O3 sintering additives were prepared by spark plasma sintering and the effect of sintering additives on the hydrothermal corrosion behavior of SiC bulks was investigated in the static autoclave at 400°C/10.3 MPa. The SiC specimen with Al2O3 sintering additive exhibited a higher weight loss and followed a linear law. However, the SiC specimen with Al2O3 + Y2O3 additive exhibited a lower weight loss and followed a parabolic law, indicating that the corrosion kinetic and mechanism were different for these two SiC bulks. Further examination revealed that, a deposited layer was formed on the surface of SiC specimen with Al2O3 + Y2O3 sintering additive after corrosion, which can effectively protect the SiC specimen from further corrosion, and thereby improved the corrosion resistance of the SiC specimen with Al2O3 + Y2O3 sintering additive.  相似文献   

5.
A model system consisting of coarse SiC (32–160 μm) as starting powder and Y2O3 and AlN as sintering additives was liquid phase sintered. Coarse-grained starting powder led to large intergranular phase regions which allowed an accurate determination of the chemical composition by wavelength-dispersive X-ray microanalysis (WDS). When N2 was used as sintering atmosphere, a N-rich amorphous phase (about 44 at.% N) was identified by WDS to be the main triple-junction phase in the sintered SiC ceramics, while three further crystalline intergranular phases were AlN, Y2SiN4O3 and an O-rich phase (Y10Al2Si3O18N4). The overall O content was found to be reduced in comparison to the initial powder composition. The incorporation of N from the sintering atmosphere into the intergranular phase and a subsequent carbothermal reduction are believed to be responsible for the removal of O and the formation of the N-rich amorphous phase.  相似文献   

6.
《Ceramics International》2017,43(6):5343-5346
A polycrystalline SiC ceramic prepared by pressureless sintering of α-SiC powders with 3 vol% Al2O3-AlN-Y2O3 additives in an argon atmosphere exhibited a high electrical resistivity of ~1013 Ω cm at room temperature. X-ray diffraction revealed that the SiC ceramics consisted mainly of 6H- and 4H-SiC polytypes. Scanning electron microscopy and high resolution transmission electron microscopy investigations showed that the SiC specimen contained micron-sized grains surrounded by an amorphous Al-Y-Si-O-C-N film with a thickness of ~4.85 nm. The thick boundary film between the grains contributed to the high resistivity of the SiC ceramic.  相似文献   

7.
《Ceramics International》2022,48(21):31679-31685
In order to improve the sintering of SiC, mixtures of Al2O3 and Y2O3 powders are commonly included as sintering additives. The aim of this work was to use mechanically alloyed Al2O3–Y2O3 mixtures as sintering additives to promote liquid phase sintering of SiC using spark plasma sintering. The results showed that milling reduced the particle size of the powders and led to the formation of complex oxide phases (YAP, YAM, and YAG) at low temperatures. As the ball milling time increased, the mass loss of specimens sintered with mechanically alloyed Al2O3–Y2O3 mixtures decreased, and accordingly the relative density increased. However, the hardness and flexural strength of sintered SiC specimens first increased and then decreased. Because the specimens prepared with oxides milled for a long time contained too much YAG/YAP and accordingly too much liquid at sintering temperature. This negatively affected the mechanical properties of the SiC specimens because of the increased volume of the complex oxide phases, which have inferior mechanical properties to SiC, in the sintered specimens. When the ball milling time was 6 h, the hardness (24.02 GPa) and flexural strength (655.61 MPa) of the SiC specimens reached maximum values.  相似文献   

8.
The suitability of MgO as a densification aid for α-SiC has been investigated. Samples of SiC containing additions of MgO, both alone and in combination with A12O3 and Y2O3, have been hot pressed at temperatures between 1500 and 1900°C and pressureless sintered at temperatures up to 2000°C. The MgO reacts with surface SiO2 from the SiC grains to form a liquid phase which promotes densification by particle rearrangement and solution-reprecipitation processes. With combined additions of MgO, Al2O3 and Y2O3, a eutectic in the system MgO –Al2O3 –Y2O3 allows extensive liquid formation at 1700°C independent of the SiO2 content of the SiC powder, enabling efficient densification by hot-pressing. Volatilisation due to reactions between the MgO and the SiC or with the furnace environment, however, oppose densification by pressureless sintering, and must be compensated for by the use of Mg-containing powder beds.  相似文献   

9.
The impulse excitation technique (IET) and high temperature X-ray diffraction (HTXRD) were used to investigate the intergranular glass phase and its crystallisation behaviour in four hot-pressed silicon nitrides. The internal friction or damping peak height measured with IET near the glass transition temperature, Tg, is used as a qualitative indicator for the amount of residual intergranular amorphous phase after sintering. Silicon nitride powder was hot-pressed with different sintering additives. The silicon nitride containing 4 wt.% Al2O3 does not reveal an internal friction peak at Tg, i.e. it does not contain a significant amount of intergranular glass phase. Three other silicon nitrides, containing either 8 wt.% Y2O3, 6 wt.% Y2O3+2 wt.% Al2O3, or 2 wt.% Y2O3+4 wt.% Al2O3+2 wt.% TiN, do show an internal friction peak near Tg. This “Tg-peak” is nearly unaffected by heating up to 1400 °C in the silicon nitride with Y2O3+Al2O3+TiN sintering aids, whereas the amount of intergranular glass in the ceramics containing either Y2O3+Al2O3 or Y2O3 as a sintering aid is strongly reduced by subsequent heating. As observed from HTXRD, the onset temperature of crystallisation of the intergranular glass in the ceramic containing Y2O3+Al2O3 sintering aids is about 1100 °C, with the formation of Y–N-apatite (Y20N4Si12O48) and O-sialon (Al0.04Si1.96N1.96O1.04). The O-sialon phase in the yttria and alumina containing ceramics, formed either during sintering or during heat treatment, is not stable at elevated temperatures and dissolves in the intergranular glass phase between 1300 and 1400 °C. The O-sialon phase in the ceramic without Y2O3 sintering additive, however, is thermally stable. The presence of Ti4+ ions in the intergranular glass phase is suggested to inhibit its crystallisation, resulting in a stable high temperature damping behaviour.  相似文献   

10.
Sub-micron sized SiC additions can be used to increase the wear resistance and change the fracture mode of Al2O3. However, these additions also restrict sintering.Al2O3 and Al2O3–5%SiC ‘nanocomposites’ were prepared from alumina powders of high purity and of commercial-purity, with or without the addition of Y2O3. The effects of these compositional variables on sintering rate, final density and grain boundary composition were investigated. A direct comparison with Al2O3–SiO2 composites was also made, as it has been proposed that SiC partially oxidises during processing of Al2O3–SiC nanocomposites.The addition of 5 vol.% SiC to Al2O3 hindered densification, as did addition of 0.15 wt.% Y2O3 or 0.1 wt.% SiO2. In contrast, the addition of 0.15 wt.% Y2O3 to Al2O3–5% SiC nanocomposites improved densification.The composition of Al2O3–Al2O3 grain boundaries in these materials was studied using STEM and EDX microanalysis. The addition of SiC and SiO2 caused segregation of Si, and Y2O3 addition caused segregation of Y. The segregation of each element was equivalent to <10% of a monolayer at the grain boundary. However, if SiC and Y2O3 were simultaneously added the segregation increased to 40% of a monolayer. The enhanced segregation was attributed to increased oxidation of SiC in the presence of Y2O3 allowing formation of a SiO2–Al2O3–Y2O3 eutectic phase or a segregated layer which may explain the improvement in sintering rate when Y2O3 was added to nanocomposites.  相似文献   

11.
The combination of Al2O3 and CeO2 was testified as suitable sintering additive for liquid phase sintering of SiC ceramics, which has lower sintering temperature than that sintered with Al2O3 and Y2O3 as sintering aids. However, the mechanical properties including flexural strength, Vickers’ hardness and fracture toughness of this system were similar to those of the samples sintered with Al2O3 and Y2O3 as sintering aids. The good wettability of the eutectic liquid phase on SiC plate, the high solubility of SiC particles into the liquid phase and the penetration of the liquid phase along the SiC–SiC grain boundaries all confirmed the suitability of the combination of Al2O3 and CeO2 as liquid phase sintering additive for SiC.  相似文献   

12.
The aqueous colloidal processing of SiC with Y3Al5O12 liquid-phase sintering additives was investigated for two different additive systems, one the mixture of Y2O3 and Al2O3 in a 3:5 molar ratio and the other directly Y3Al5O12. The investigation involved the study of the colloidal stability of the different components, and the comparison of the rheological behaviour of concentrated suspensions of SiC, SiC + 3Y2O3:5Al2O3, and SiC + Y3Al5O12 as a function of the sonication condition, dispersant content, and solid loading. This allowed appropriate conditions for the preparation of well-dispersed, single-phase, and multi-component concentrated suspensions of SiC to be identified. It was found that the multi-component suspensions have better rheological behaviour than the single-phase ones, and that in terms of rheology and slip casting the Y3Al5O12 additives are more functional than the conventional 3Y2O3 + 5Al2O3 additives. It was also demonstrated that the Y3Al5O12 additive is as effective as the 3Y2O3 + 5Al2O3 additive in densifying SiC via liquid-phase sintering, with there existing no differences either in the microstructure or in room-temperature mechanical properties (hardness, toughness, and fracture mode). Implications of interest for the wet-shaping of complex SiC parts are discussed.  相似文献   

13.
SiC ceramics were prepared from nanosized β-SiC powder with different compositions of AlN and Y2O3 sintering additives by spark plasma sintering (SPS) at 1900 °C for 600 s in N2. The relative density of the sintered SiC specimens increased with increasing amount of AlN, reaching a relative density higher than 99%, while at the same time grain size decreased significantly. The smallest average grain size of 150 nm was observed for SiC sample sintered with 10 vol% of additives consisting of 90 mol% AlN and 10 mol% Y2O3. Fully dense nanostructured SiC ceramics with inhibited grain growth were obtained by the AlN additive and SPS technique. The flexural strength of the SiC body containing 70 mol% AlN and 30 mol% Y2O3 additives reached the maximum value of 1000 MPa. The SiC bodies prepared with AlN and Y2O3 additives had the fracture toughness of around 2.5 MPam1/2.  相似文献   

14.
The effect was investigated of the intergranular phase chemistry on the sliding-wear resistance of pressureless liquid-phase-sintered (PLPS) α-SiC densified with 10 vol.% 5Al2O3 + 3RE2O3 (RE = La, Nd, or Yb) additives. It was found that the sliding-wear behaviour of these ceramics is similar to what is observed in other polycrystalline ceramics: initial mild, plasticity-controlled wear followed by severe, fracture-controlled wear, with a well-defined wear transition. Most importantly, the sliding-wear resistance of PLPS SiC is found to increase with decreasing size of the RE3+ cation in the rare-earth oxide additive, with a lower susceptibility to mild and severe wear and a delayed transition to severe wear. Underlying this effect is likely the hardening of the intergranular phase resulting from the increase in the field strength of the RE3+-O2− bonds as the size of the RE3+ cation decreases. Tailoring the intergranular phase chemistry via the selection of RE2O3 sintering additives with cations as small as possible thus emerges as a potentially interesting approach to improving the sliding-wear resistance of PLPS SiC ceramics.  相似文献   

15.
The ultrafine-grained β-Sialon ceramics were fabricated by spark plasma sintering at different temperatures with inorganic Al2O3–Y2O3 and Ti–22Al–25Nb intermetallic powder as composite additives. The research showed that β-Sialon ceramics achieve two-stage sintering densification. Al2O3–Y2O3 inorganic additives promoted the synthesis and densification of β-Sialon ceramics at 1125–1215°C. Ti–22Al–25Nb intermetallic powder diffused Ti and Nb elements at 1240–1425°C, thereby improving the fracture toughness of β-Sialon ceramics. The maximum fracture toughness (∼9.69 MPa m1/2) under 19.6 N was obtained for β-Sialon ceramics sintered at 1600°C.  相似文献   

16.
Silicon carbide (SiC) ceramics have been fabricated by pressureless liquid phase sintering with Al2O3 and rare-earth oxides (Lu2O3, Er2O3 and CeO2) as sintering additives. The effect was investigated of the different types of rare earth oxides on the mechanical property, thermal conductivity and microstructure of pressureless liquid phase sintered SiC ceramics. The room temperature mechanical properties of the ceramics were affected by the type of rare earth oxides. The high temperature performances of the ceramics were influenced by the triple junction grain boundary phases. With well crystallized triple junction grain boundary phase, the SiC ceramic with Al2O3–Lu2O3 as sintering additive showed good high temperature (1300 °C) performance. With clean SiC grain boundary, the SiC ceramic with Al2O3–CeO2 as sintering additive showed good room temperature thermal conductivity. By using appropriate rare earth oxide, targeted tailoring of the demanding properties of pressureless liquid phase sintered SiC ceramics can be achieved.  相似文献   

17.
The role of microstructure in affecting the fatigue crack growth resistance of grain bridging silicon nitride ceramics doped with rare earth (RE = Y, La, Lu) oxide sintering additives was investigated. Three silicon nitride ceramics were prepared using MgO‐RE2O3 and results were compared with a commercial Al2O3‐Y2O3‐doped material. Decreasing stress intensity range (ΔK) fatigue tests were conducted using compact‐tension specimens to measure steady‐state fatigue crack growth rates. Specimens doped with MgO‐RE2O3 additives showed a significantly higher resistance to crack growth than those with Al2O3‐Y2O3 additives and this difference was attributed to the much higher grain aspect ratio for the MgO‐RE2O3‐doped ceramics. When the crack growth data were normalized with respect to the total contribution of toughening by bridging determined from the monotonically loaded R‐curves, the differences in fatigue resistance were greatly reduced with the data overlapping considerably. Finally, all of the MgO‐RE2O3‐doped silicon nitrides displayed similar steady‐state fatigue crack growth behavior suggesting that they are relatively insensitive to the intergranular film.  相似文献   

18.
Mullite-bonded porous SiC ceramics sintered in air by gelcasting are still challenges due to the high porosity induced severe oxidation of SiC, which results in the formation of large amount of detrimental cristobalite phase. Here in this work, small amounts of Y2O3 and CaF2 were added in SiC and Al(OH)3 raw materials as sintering additives for the in situ growth of mullite reinforcement. This additive system promoted the reaction between oxidation-derived SiO2 from SiC and Al2O3 decomposed from Al(OH)3 to mullite phase. Almost no cristobalite phase was detected when sintered at 1450℃/2 h with CaF2 addition of more than 2.0 wt%. Mullite whisker reinforcement was in situ formed due to the gas reaction mechanism caused by CaF2 addition. Thus obtained porous SiC ceramics exhibited a flexural strength of 67.6 MPa at porosity of 41.3%, which maintained exceeding 36 MPa after 8 h corrosion in 10 wt% NaOH 80℃ solution, being the best performance up to now. This high performance of porous SiC was attributed to the additive induces proper phase control and in situ formation of whisker-like mullite reinforcement.  相似文献   

19.
In this study, we investigated the electrical and thermal properties of SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 (RE = Sm, Gd, Lu) additives. The three SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 additives showed electrical conductivities on the order of ~103 (Ω·m)?1, which is one order of magnitude higher than that of the SiC ceramics sintered with 2 vol% Y2O3 only. The increase in electrical conductivity is attributed to the growth of heavily nitrogen‐doped SiC grains during sintering and the confinement of oxide additives in the junction area. The thermal conductivities of the SiC ceramics were in the 176–198 W·(m·K)?1 range at room temperature. The new additive systems, equimolar Y2O3–RE2O3, are beneficial for achieving both high electrical conductivity and high thermal conductivity in SiC ceramics.  相似文献   

20.
This paper reports the joining of liquid-phase sintered SiC ceramics using a thin SiC tape with the same composition as base SiC material. The base SiC ceramics were fabricated by hot pressing of submicron SiC powders with 4 wt% Al2O3–Y2O3–MgO additives. The base SiC ceramics were joined by hot-pressing at 1800-1900°C under a pressure of 10 or 20 MPa in an argon atmosphere. The effects of sintering temperature and pressure were examined carefully in terms of microstructure and strength of the joined samples. The flexural strength of the SiC ceramic which was joined at 1850°C under 20 MPa, was 343 ± 53 MPa, higher than the SiC material (289 ± 53 MPa). The joined SiC ceramics showed no residual stress built up near the joining layer, which was evidenced by indentation cracks with almost the same lengths in four directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号