首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 922 毫秒
1.
针对一类带有多源干扰的随机系统,研究其抗干扰控制问题.针对可以由未知参数的外源系统产生,代表频率、振幅和初相都未知的干扰,构建随机自适应干扰观测器对其进行估计.基于此,结合自适应控制和随机控制的方法,提出基于干扰观测器的抗干扰控制策略,保证复合系统的所有信号均为均方渐近有界.仿真结果验证了所提出方法的正确性和有效性.  相似文献   

2.
本文针对一类微纳卫星姿态控制系统飞轮突变故障提出了一种具有干扰抑制和补偿能力的精细故障诊断及容错控制方法.针对反作用飞轮的突变故障,本文不仅考虑了星体转动惯量变化导致的系统参数不确定性,而且考虑了姿态控制系统中飞轮振动带来的干扰影响,设计基于干扰观测器和故障诊断观测器的复合抗干扰容错控制器,并基于线性矩阵不等式对控制器进行求解,使复合系统稳定并满足一定的鲁棒H∞性能.仿真结果表明,基于微纳卫星姿态控制系统的精细故障诊断方法在有效诊断系统时变故障的同时,可有效抵消与抑制干扰.  相似文献   

3.
文新宇 《自动化学报》2014,40(9):1882-1888
基于干扰观测器控制(Disturbance-observer-based control,DOBC)作为一种有效的干扰补偿策略取得了广泛的应用. 然而,当干扰和控制输入不能在同一时刻进入控制通道时,外部信号很难得到实时估计和补偿.提出一种复合DOBC结构,包括干扰观测、干扰预测和反馈调节三个部分.该方法的特点是即使一类非线性系统存在输入时滞,同样可以继承传统DOBC的优点. 最后,通过构造辅助观测器给出了预测误差以及复合闭环系统的稳定性分析方法.  相似文献   

4.
魏新江  张玲艳 《控制与决策》2016,31(9):1697-1701

针对一类带有干扰的非线性严格反馈系统, 研究其抗干扰控制问题. 系统干扰满足不匹配条件, 代表一类部分信息已知的干扰. 通过设计非线性干扰观测器, 提出基于非线性干扰观测器和back-stepping 的抗干扰控制方法来补偿干扰, 该方法可以保证闭环系统所有信号是半全局最终一致有界的. 最后, 通过与现有方法的对比验证了所提出方法的正确性和有效性.

  相似文献   

5.
针对挠性机械手易受到建模误差和多源干扰等影响,该文提出了一种基于观测器的自适应容错控制策略。首先,构造干扰观测器(DO)和故障诊断观测器(FDO),分别对机械手的挠性附件产生的振动和执行器故障进行实时估计和抵消;其次,考虑了物理结构限制会导致执行器输入饱和情况,引入抗饱和算法,不仅降低了控制器设计难度,通过约束函数也保证了系统广义状态的稳定性;最后,通过MATLAB/Simulink仿真进一步验证了所提出方法的有效性。  相似文献   

6.
近年来,前馈补偿技术得到广泛研究,其可以提高系统的控制精度.对于非最小相位系统,很难给出干扰和可测信息的直接关系,此外,频率的不确定性以及估计值之间的耦合会导致大量冗余参数的运算.现有的自适应方法存在估计值之间的耦合,会增加干扰估计误差收敛性能分析难度.而基于干扰观测器控制(DOBC)通过调节控制器和观测器参数,可以同时对多源不确定进行补偿和抑制.基于此,提出一种分步式观测器设计方法.首先设计一种辅助滤波器和观测器对未知频率正弦干扰参数进行估计,同时给出干扰的等效形式;然后利用估计值构造观测器得到输入干扰状态,从而将这类非线性系统的干扰抵消问题转换为线性系统的观测器设计问题;最后通过李雅普诺夫定理和数值仿真验证所提出方法的有效性.  相似文献   

7.
针对系统存在干扰波形已知但干扰幅值未知或幅值无界的一类外界干扰,提出了一种实现干扰补偿的控制策略,并给出了具体的设计过程。通过对原系统构造一个新的系统输出并为其设计状态观测器,进而实现对状态和干扰的同时估计。此外,并将干扰的估计信息引入到控制律当中,从而实现系统对外界干扰的补偿控制,保证系统状态有界。仿真结果验证了这一控制方法的有效性。  相似文献   

8.
基于故障诊断观测器的输出反馈容错控制设计   总被引:1,自引:0,他引:1  
张柯  姜斌 《自动化学报》2010,36(2):274-281
针对自适应故障诊断观测器需要误差系统满足苛刻的严格正实条件(Strictly positive real, SPR)和难于处理输出存在扰动的不确定性系统等问题, 提出了一种新型的增广故障诊断观测器的设计方法, 不仅显著地拓宽了自适应故障诊断观测器的适用范围, 而且其具有处理系统扰动的良好性能. 在故障估计的基础上, 提出了动态输出反馈容错控制的设计方法, 避免了基于观测器的状态反馈容错控制的设计难点. 同时, 故障诊断观测器和输出反馈容错控制是分开设计的, 并且又考虑了各自的性能, 简化了设计过程. 最后, 通过仿真实验验证了所提方法的有效性.  相似文献   

9.
杨青运  陈谋 《控制理论与应用》2016,33(11):1449-1456
针对近空间飞行器姿态控制中出现的执行器故障,输入饱和与外部干扰等问题,设计了一种基于二阶滑模干扰观测器和辅助系统的鲁棒容错跟踪控制方法.首先,将系统不确定,外部扰动和执行器故障作为复合干扰,设计super-twisting二阶滑模干扰观测器对其进行估计.然后为解决输入饱和问题构造了辅助分析系统,并借助backstepping方法,设计姿态容错跟踪控制器.利用Lyapunov方法,严格证明了所有闭环系统信号的收敛性.最后将所设计的控制方法应用于近空间飞行器姿态控制中,仿真结果验证了该控制方法的有效性.  相似文献   

10.
本文设计了一种可以对外部干扰进行估计的高阶干扰观测器,并针对一类具有外部干扰的单输入单输出离散时间线性系统,提出了一种基于高阶干扰观测器的极点配置控制方法.该方法由常规极点配置控制器和高阶干扰观测器组成.常规极点配置控制器用来保证闭环系统稳定,并将闭环系统的极点配置到理想位置,高阶干扰观测器用来补偿外部干扰对闭环系统的影响.理论分析以及仿真和水箱液位系统中的实验结果表明了所提方法的有效性和优越性.  相似文献   

11.
A class of stochastic nonlinear systems with fault and multisource disturbances is concerned. The fault is a general bounded actuator fault, and the multiple disturbances include partial‐known information disturbance and white noise. A stochastic adaptive disturbance observer is constructed to estimate the partial‐known information disturbance, based on which the partial‐known information disturbance can be compensated in the feed‐foreword channel immediately. Also, the multiplicative white noise can be attenuated by the designed feedback controller. To make the composite system is satisfactory, a composite disturbance based‐observer control with fuzzy fault‐tolerant control is proposed. The pole placement and LMI method is applied to attenuate and reject the disturbance. Furthermore, the fault can be compensated simultaneously. To verify the feasibility and availability of the designed control scheme, a simulation example is shown finally.  相似文献   

12.
In this article, the elegant antidisturbance fault‐tolerant control (EADFTC) problem is studied for a class of stochastic systems in the simultaneous presence of multiple heterogeneous disturbances and time‐varying faults. The multiple heterogeneous disturbances include white noise, norm bounded uncertain disturbances and uncertain modeled disturbances with multiple nonlinearities and unknown amplitudes, frequencies, and phases. The time‐varying fault signals are caused by lose efficacy of actuator. To online estimate uncertain modeled disturbances and time‐varying faults, a novel composite observer structure consisting of the adaptive nonlinear disturbance observer and the fault diagnosis observer is constructed. The novel EADFTC strategy is proposed by integrating composite observer structure with adaptive disturbance observer‐based control theory and H technology. It is proved that all the signals of closed‐loop system are asymptotically bounded in mean square under the circumstances of multiple heterogeneous disturbances and time‐varying faults occur simultaneously. Finally, the effectiveness and availability of proposed strategy are demonstrated by means of the numerical simulation and a doubly fed induction generators system simulation, respectively.  相似文献   

13.
In this paper, antidisturbance control and estimation problem are discussed for a class of discrete‐time stochastic systems with nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors. A disturbance observer is constructed to estimate the disturbance with partially known information. A composite hierarchical antidisturbance control scheme is proposed by combining disturbance observer and H control. It is proved that the 2 different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete‐time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed scheme.  相似文献   

14.
Disturbance observer‐based elegant anti‐disturbance control (DOBEADC) scheme is proposed for a class of stochastic systems with nonlinear dynamics and multiple disturbances. The stochastic disturbance observer based on pole placement is constructed to estimate disturbance which is generated by an exogenous system. Then, composite DOBC and controller is designed to guarantee the composite system is mean‐square stable and its performance satisfies a prescribed level. Finally, simulations on an A4D aircraft model show the effectiveness of the proposed approaches.  相似文献   

15.
An elegant anti-disturbance control (EADC) strategy for a class of discrete-time stochastic systems with both nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors, is proposed in this paper. A stochastic disturbance observer is constructed to estimate the disturbance with partially known information, based on which, an EADC scheme is proposed by combining pole placement and linear matrix inequality methods. It is proved that the two different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete-time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed schemes compared with some existing results.  相似文献   

16.
This paper is concerned with the problem of feedback passification for switched stochastic time‐delay systems with multiple disturbances subject to mode‐dependent average dwell‐time switching. The multiple disturbances are composed of two parts: one is given through an exogenous system and the other is described in the form of norm‐bounded vector. A disturbance observer is constructed to estimate an exogenous disturbance. Then, a state feedback controller that includes the estimation value is designed to guarantee the passivity of the closed‐loop system. The observer and controller gains are developed via linear matrix inequalities. The effectiveness of the proposed method is verified through a numerical example and an application example to PWM‐driven boost converter.  相似文献   

17.
Various sources of disturbances exist simultaneously in robotic systems, such as vibrations, frictions, measurement noises, and equivalent disturbances from unmodeled dynamics and nonlinearities. However, most results on anti-disturbance control focus on only one type of disturbances, which cannot reflect the real applications and may lead to design conservativeness due to partial use of the disturbance information. In this paper, we propose a composite hierarchical anti-disturbance control (CHADC) strategy for robotic systems in the presence of multiple disturbances as well as system uncertainties. Particularly, we assume the existence of two types of disturbances, where the first type represents disturbances from exogenous systems with model perturbations, while the second type includes other random disturbances satisfying the L2-norm bound condition. Accordingly, the CHADC control architecture is composed of a nonlinear disturbance observer (NDO) and an H based PID controller, where the NDO is constructed to estimate the first type of disturbances and provide feed forward compensation, while the feedback PID loop is optimized using H theory to minimize the second type of disturbances. Robustness against system uncertainties is also considered in this hierarchical control structure. The proposed control approach is applied to a two-link robotic manipulator and compared with the conventional DOBC (disturbance observer based control) strategies.  相似文献   

18.
It is difficult to diagnose and accommodate the faults if disturbances and faults exist simultaneously in the controlled plants. In this paper, an anti‐disturbance fault tolerant control (FTC) scheme is presented for a class of nonlinear systems with both faults and multiple disturbances. The multiple disturbances are supposed to include two types including the uncertain modeled disturbances and norm bounded uncertain disturbances. A composite fault tolerant controller is constructed by integrating a fault accommodation from diagnosis observer with additional disturbance rejection and attenuation performance for two different types of disturbances. As a result, the fault can be accommodated and the multiple disturbances can be rejected and attenuated simultaneously. Simulations for a flight control system are given to show the efficiency of the proposed approach. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号